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Abstract

This paper describes and compares two methods for simulating
user behaviour in spoken dialogue systems. User simulations
are important for automatic dialogue strategy learning and the
evaluation of competing strategies. Our methods are designed
for use with “Information State Update” (ISU)-based dialogue
systems. The first method is based on supervised learning using
linear feature combination and a normalised exponential output
function. The user is modelled as a stochastic process which
selects user actions ({ speech act, task ) pairs) based on features
of the current dialogue state, which encodes the whole history
of the dialogue. The second method uses n-grams of { speech
act, task } pairs, restricting the length of the history considered
by the order of the n-gram. Both models were trained and eval-
uated on a subset of the COMMUNICATOR corpus, to which we
added annotations for user actions and Information States. The
model based on linear feature combination has a perplexity of
2.08 whereas the best n-gram (4-gram) has a perplexity of 3.58.
Each one of the user models ran against a system policy trained
on the same corpus with a method similar to the one used for
our linear feature combination model. The quality of the simu-
lated dialogues produced was then measured as a function of the
filled slots, confirmed slots, and number of actions performed
by the system in each dialogue. In this experiment both the lin-
ear feature combination model and the best n-grams (5-gram
and 4-gram) produced similar quality simulated dialogues.

1. Introduction

A central motivation for user simulation is to make it feasible to
test the performance of different dialogue policies against sim-
ulated users in an efficient and inexpensive way. Using real
users would require much more time and effort. In addition,
every time we modified a dialogue strategy we would have to
repeat all experiments with human users from scratch. Another
powerful motivation for developing accurate user simulations is
that they can be used to generate huge amounts of data, which
we need for automatic learning of dialogue strategies (see e.g.
[1, 3]). Models of dialogue state transitions that will feed Rein-
forcement Learning algorithms can be estimated either directly
from a corpus or by generating training episodes using simu-
lation. The advantage of the latter approach is that the system
state representation need not be fixed: it can be changed and
the system retrained without having to change the data set, data
transcriptions or user model [3]. Several approaches to user
simulation have been proposed (e.g. [2, 3]). Building on this
work, we develop and compare two methods for simulating user
behaviour. Our methods are designed for use with “Information
State Update” (ISU) dialogue systems. The ISU approach to di-
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alogue modelling supports the development of generic and flex-
ible dialogue systems by using rich representations of dialogue
context. Information states represent the state of a dialogue as
a large set of features, e.g. speech acts, tasks, filled slots, ASR
confidence score, etc. For full details see [4, 5].

Our first model of user behaviour is based on supervised
learning using linear feature combination and a normalised ex-
ponential output function. Its output is a probability distribution
over actions ({ speech act, task ) pairs). The model is based only
on features of the current dialogue state. Note that the current
dialogue state does not encode only the last system action but
also the whole history of the dialogue. The second method uses
n-grams of ( speech act, task ) pairs restricting the length of the
history taken into account up to the order of the n-gram. Both
models simulate user behaviour at the intention level. Inten-
tions represent the actual information that a dialogue participant
wants to convey. An intention can be defined as the minimum
piece of information that can be conveyed independently within
a given application [3]. Current approaches to user behaviour
modelling focus on the intention level, bypassing the speech and
word levels. However, by incorporating performance statistics
from other levels (such as speech recognition and natural lan-
guage understanding), the resulting systems can simulate the
performance of complete dialogue systems.

Both models were trained and evaluated on a subset of the
COMMUNICATOR corpus, to which we have added annotations
for user actions and Information States. We have built an en-
vironment in which we can run user simulations against a real
system or a learnt strategy in order to generate dialogues. This
environment has been implemented using DIPPER [5] available
at http://www.ltg.ed.ac.uk/dipper. The DIPPER architecture is a
collection of software agents for prototyping dialogue systems
implemented on top of the Open Agent Architecture (OAA)
[6]. DIPPER supports building (multimodal) dialogue systems,
by offering a Dialogue Move Engine and interfaces to speech
recognisers, speech synthesisers, parsers and other agents. The
user simulations and our learnt system policies have been im-
plemented as OAA agents in this environment.

In section 2 we discuss the annotations we have added to
the COMMUNICATOR data. Section 3 describes our environ-
ment based on DIPPER and OAA as well as the 2 user simu-
lation models based on n-grams and linear feature combination
respectively. A brief description of the system policy is also
given. In section 4 we present the tests carried out and finally
in section 5 we end with conclusions and directions for future
work.

2. COMMUNICATOR data annotation

The COMMUNICATOR corpora (2000 and 2001) consist of
human-machine dialogues (approx 2300 dialogues in total) in
the domain of flight reservation. The users always try to book



DI ALOGUE LEVEL

Speaker: user

ConvDomai n: [ about _t ask]

SpeechAct: [provide_info]

Asrlnput: <date_tinme>may eight</date_time>
Transl nput: <date_tinme>may seventh</date_tinme>
Cut put :

TASK LEVEL

Task: [depart_date]

FilledSlot: [depart_date]

Fi |l edSl ot Val ue: [nay eight]
GoundedSlot: [orig_city,dest_city]

LOW LEVEL

Wor dEr r or Rat enoi ns: 50. 00
Wor dError Rat e:  50. 00

Sent enceError Rate: 100. 00
KeyWor dEr r or Rat e:  100. 00

HI STORY LEVEL

SpeechAct sHi st: openi ng_cl osi ng, i nstruction,
request _info,[provide_info],inplicit_confirm
request _info,[provide_info],inplicit_confirm
request _i nfo, [ provi de_i nf o]

TasksHi st: neta_greeting_goodbye, neta_i nstruct,
orig_city,[orig_city],orig_city,dest_city,[dest_city],
orig_dest_city,depart_arrive_date, [depart_date]

FilledSlotsHi st: [orig_city],[dest_city],[depart_date]

Fi |l edSl ot sVal uesHi st: [cincinnati],[denver],[may eight]

ConfirmedSlotsHi st: [],[orig_city],[orig_city,dest_city]

Figure 1: Example Information State (State 10 of a COMMUNI -
CATOR dialogue). [ User information ]

a flight, but they may also try to select a hotel or car-rental.
The dialogues are primarily “slot-filling” dialogues, with some
information being presented to the user. These corpora have
been previously annotated (but only for the system’s side of the
dialogues) using the DATE scheme’s Conversational Domain,
Speech Act, and Task dimensions [7].

We used an automatic system to assign Speech Acts and
Tasks to the user utterances, and to compute information states
for each point in the dialogue (i.e. after every utterance) [8]. The
system is implemented with DIPPER [5] and OAA [6], using
several OAA agents. An example of some of the types of infor-
mation recorded in information states is shown in figure 1. This
is an information state corresponding to the user’s response af-
ter the system tried to implicitly confirm origin and destination
cities, and then requested information about the departure date.
As shown in the figure, the user provides information about the
departure date, and also positively confirms (i.e. grounds) the
origin city and destination city slots. The history level of the
information states encodes information about the complete dia-
logue history.

For the experiments reported in this paper, we used the data
from 4 of the 8 systems in the 2001 corpus. This subset consists
of 97 users, 697 dialogues, and 51309 states.

3. Theuser and system simulations

The environment used for simulating both the system and the
user employs DIPPER [5] and OAA [6] and can support various
agents for system or user simulation. For the system simulation
we can use either reinforcement learning, supervised learning
with linear feature combination, n-grams, or hand-coded sys-
tems based on the ISU approach. For the user simulation we
can use either supervised learning with linear feature combina-
tion or n-grams. This is due to the modularity of the simula-
tion environment’s architecture, making it easy to incorporate
other system or user agents. In the experiments described in the

sequel we use supervised learning with linear feature combina-
tion for the system simulation, and either n-grams or supervised
learning with linear feature combination for the user simulation.
In the future we also plan experiments with a system based on
n-grams and a baseline hand-crafted spoken dialogue system
that is currently under development. Moreover, we have car-
ried out experiments using a system policy learnt with hybrid
reinforcement/supervised learning [9].

3.1. Simulating ASR errors

Ideally we would have dialogue data that contains automatic
speech recognition (ASR) confidence scores. Unfortunately,
the COMMUNICATOR corpus does not have this information,
but it does contain both the output of the speech recognition
engine for a user utterance and its manual transcription. By
comparing the ASR output with the manual transcription we
compute the word error rate (WER), which we assume is cor-
related with ASR confidence. During training the linear feature
combination user model used information about the word error
rate. Therefore in simulation mode DIPPER generates word er-
ror rates for each user action based on the distribution of word
error rates in the COMMUNICATOR data. For about 70% of the
user utterances the speech recognition performance was perfect
(WER=0%), for 10% of the user utterances the speech recog-
niser produced a WER of 100% and for the rest of the user
utterances WER values varied between 0 and 100%.

In the future we also intend to use keyword error rates
(KER) since they are already included in the information states
produced by the automatic annotation system. The KER shows
the percentage of the correctly recognised keywords (cities,
dates, times) and is computed after parsing the input utterances.
It therefore simulates natural language understanding errors.

3.2. Then-gram user simulation

The user simulation based on n-grams treats a dialogue as a se-
quence of pairs of speech acts and tasks. It takes as input the
n-1 most recent ( speech act, task ) pairs in the dialogue history,
and uses the statistics of n-grams in the training set to decide
on the next user action (one of the 48 ( speech act, task ) pairs)
that will be passed to DIPPER. If no n-grams match the cur-
rent history, the model can back-off to smaller n-grams. We use
the annotated COMMUNICATOR data as a sequence of { speech
act, task ) pairs for the training data, and we use the CMU-
Cambridge Statistical Language Modelling Toolkit v2 [10] to
generate n-grams with multiple types of discounting, as de-
scribed in section 4.

Although we currently only use it for user simulation, the
n-gram simulation agent is parametric, so it can be used either
for user simulation or for system simulation. During training,
the n-gram agent picks only the n-grams which are appropriate
for the type of model, namely the n-grams which end in sys-
tem/user actions for the system/user simulations respectively.
During simulations, the n-gram user model chooses the next ac-
tion according to the distribution of n-grams, while the n-gram
system model chooses the single action with the best score. The
system can perform multiple actions at the same turn, while the
user can only perform one action. In preliminary tests with a n-
gram based system policy, backing-off led to seemingly random
dialogues, so currently backing off is permitted only for the n-
gram based user simulation and the first action of the system
(to ensure that the system always produces at least one action
before it releases the turn).



3.3. Simulationsbased on linear feature combination

The ISU framework is significantly different from the frame-
works used in previous work on learning dialogue management
policies for user behaviour, in that the number of possible states
is extremely large. Having a large number of states is a more re-
alistic scenario for practical, flexible, and generic dialogue sys-
tems, but it also makes many learning approaches intractable.
To overcome the large state space we need to exploit common-
alities between different states. The feature-based nature of
ISU state representations expresses exactly these commonali-
ties between states through the features that the states share.
There are a number of techniques that can be used for learn-
ing with feature-based representations of states, but the simplest
and most efficient is to use a linear combination of features.

We use a linear combination of features to map from a vec-
tor of real valued features f(s) for the state s to a probability
distribution P(a|s) over user actions a. The trained parameters
of the linear function are a vector of weights w, for each action
a. Given weights trained on a given dataset, an estimate P(als)
of the probability of the user doing action a given state s is the
normalised exponential function applied to the inner product of
the state vector f(s) and the weight vector w, .

b tey — _ exXP(f(s) wa)
i = e L) w

The weights w, are trained on the state-action pairs ob-
served in the training data. For training, we use a simple gradi-
ent descent learning method, with weight decay regularisation.

The mapping f(s) from states to vectors must be specified
before learning. Each value in these vectors represents a possi-
ble commonality between states, so it is through the definition
of f(s) that we control the notion of commonality which will
be used by the linear function. The definition of f(s) we are
currently using is a straightforward mapping from feature-value
pairs in the information state s to values in the vector f(s). One
area of future research is to investigate more complicated map-
pings f(s), such as the application of kernel methods.

The state vector mapping f(s) is computed using the first
four levels of our annotation of the COMMUNICATOR data. We
chose a subset of the annotations and converted them into one
of three types of features. For annotations which take numbers
as values, we used a simple function to map these numbers to
a real number between 0 and 1, with the absence of any value
being mapped to 0. For annotations which can have arbitrary
text as their values, we used 1 to represent the presence of text
and 0 to represent no value. The remaining annotations all have
either a finite set of possible values, or a list of such values.
Annotations with list values are first converted to lists of pairs
consisting of the annotation label and each value. For every
possible label-value pair, we define a feature in the vector f(s)
which is 1 if that label-value pair is present in the state and O if
it is not. These form the vast majority of our 290 features.

The dialogue system model which we use in our evaluation
of user models is also based on a linear combination of state
features, and the same set of state features from the annotated
COMMUNICATOR data. Supervised learning is used to train the
linear model to predict the next system action (out of a total of
70 actions), and the most probable next action is taken as the
system policy’s choice — see [9] for full details.

IWe will use the notation 27y to denote the inner product between
vectors z and y (i.e. “x transpose times y”). This form of modd is
sometimes called a maximum entropy model, and is equivalent to asin-
gle layer neural network probability estimator.

4. Experimental results

First we divided the COMMUNICATOR corpus in training and
test sets and computed the perplexity of our models. Then we
evaluated our user simulation models by running them against
a learnt system policy. Both the user simulations and the sys-
tem policy were trained using the annotated COMMUNICATOR
data for the ATT, BBN, CMU, and SRI systems. The quality of
the simulated dialogues produced was then measured as a func-
tion of the filled slots, confirmed slots, and number of actions
performed by the system in each dialogue.

4.1. Perplexity estimation

We used a 10-fold cross-validation technique, computing per-
plexity for each of the test subsets and then calculating the aver-
age perplexity across all 10 trials. We computed perplexity for
the n-grams (2 < n < 5) using 4 different types of discount-
ing: absolute, linear, Good-Turing, and Witten-Bell. For the
user model based on linear feature combination, we used only
absolute discounting. The results are given in table 1.

Model | Discounting | Perplexity | Std Dev
linear absolute 2.08 0.20
5-gram | absolute 4.01 0.71
linear 4.36 0.88
Good-Turing 3.93 0.69
Witten-Bell 3.61 0.52
4-gram | absolute 3.83 0.57
linear 4.16 0.64
Good-Turing 3.79 0.57
Witten-Bell 3.58 0.45
3-gram | absolute 4.03 0.53
linear 4.23 0.58
Good-Turing 4.07 0.56
Witten-Bell 3.94 0.46
2-gram | absolute 4.93 0.57
linear 4.96 0.58
Good-Turing 4.99 0.61
Witten-Bell 4.94 0.55

Table 1: Average perplexity and standard deviations (10 folds):
both user models, several discounting schemes.

The linear feature combination model has the lowest per-
plexity, as expected, since it uses more features than the n-grams
and the complete dialogue history. Interestingly the 4-gram has
lower perplexities than the 5-gram. We hypothesise that this
could be due to overtraining for the 5-gram (it produced very
low perplexities when tested on the training data).

4.2. Evaluation against the system policy

We also evaluated the different user simulations by running
them against a learnt system policy. For these experiments, we
restrict our attention to users who only want single-leg flight
bookings. Thus the user simulations were restricted not to pro-
duce actions related to continuation. This was done for 2 rea-
sons. First, it is easier to evaluate the generated dialogues if
all users have the same goals. In our case, there are only 4 es-
sential slots to be filled: origin city, destination city, departure
date, and departure time. If we also allowed continuation trips
then it would be difficult to count the correct number of slots
to be filled since it is not known in advance how many legs the
trip will have. Secondly, user goals were not encoded in the



COMMUNICATOR corpus, so training users with goals would
be complicated. The importance of incorporating user goals in
a user model has been shown in previous work [3], so in future
work we will build different user models according to the user
goal, or alternatively add features relevant to user goals in the
information state representation.

To evaluate the success of a dialogue, we use the final state
of the dialogue to compute a scoring function. Because cur-
rently we are considering users who only want single-leg flight
bookings, the scoring function looks at the four slots relevant to
these bookings: origin city, destination city, departure date, and
departure time. We give 25 points for each slot which is filled,
plus another 25 points for each slot which is also positively con-
firmed (i.e. grounded). We also deduct 1 point for each action
performed by the system, to penalise longer dialogues. Thus
the maximum possible score is 198 (i.e. 200 minus 2 system ac-
tions: ask for all the user information in one turn, and then offer
a flight). The motivation behind this evaluation metric is that
confirmed slots are more likely to be correct than slots which
are just filled. If we view the score as proportional to the proba-
bility that a slot is filled correctly, then this scoring assumes that
confirmed slots are twice as likely to be correct.

During testing, each user simulation was run for 1000 di-
alogues against the linear feature combination system policy.
The final state for each one of these dialogues was then fed
through the scoring function and averaged across dialogues.
The results are shown in table 2. There are 5 different user sim-
ulations: linear feature combination, bigram, trigram, 4-gram,
and 5-gram. When we run the user simulations against a system
policy we do not use discounting as we did for calculating per-
plexity because we want the user model to produce only known
actions. However, we needed discounting in the experiments of
section 4.1 because it could be the case that actions that did not
exist in the training set appeared in the test set.

Model Total | Filled | Confirmed | Length
score | slots slots penalty
linear 109.8 | 85.3 48.0 -235
5-gram | 108.9 | 72.2 51.1 -14.4
4-gram | 107.2 | 73.0 49.1 -14.9
3-gram | 101.4 | 68.7 48.2 -15.5
2-gram | 712 | 71.3 29.2 -29.3

Table 2: Average rewards across 1000 simulated dial ogues.

The linear, 5-gram, and 4-gram models all produced similar
scores. After estimating the distribution of system turn lengths
in the COMMUNICATOR corpus it was shown that the 5-gram
and 4-gram models cover 93.91% and 88.39%, respectively, of
the sequences of contiguous system actions appearing in the
data. The trigram and the bigram models cover only 66.08%
and 36.86%, which explains their worse performance.

5. Conclusion

We described and compared two methods for simulating users
of spoken dialogue systems. Our methods are designed for use
with “Information State Update” (ISU) dialogue systems. The
first method is based on supervised learning using linear fea-
ture combination and a normalised exponential output function.
The user is modelled as a stochastic process which selects user
actions ({speech act, task) pairs) based on features of the cur-
rent dialogue state, which encodes the whole history of the di-
alogue. The second method uses n-grams of (speech act, task)

pairs, restricting the length of the history taken into account by
the order of the n-gram. Both models were trained and evalu-
ated on a subset of the COMMUNICATOR corpus, to which we
have added annotations for user actions and Information States.
The model based on linear feature combination gave the best
perplexity, followed by the 4-gram. Each one of the user mod-
els ran against a system policy trained on the same corpus with
a method similar to the one used for our linear feature combi-
nation model. The quality of the simulated dialogues produced
was then measured as a function of the filled slots, confirmed
slots, and number of actions performed by the system in each
dialogue. In this experiment, both the linear feature combina-
tion model and the best n-grams (5-gram and 4-gram) produced
similar results.

Our future work will focus on incorporating user goals in
user simulations either by building different user simulations
according to the user goals or alternatively by adding features
relevant to user goals in the information state representations.
Moreover, we will perform further experiments using differ-
ent system policies i.e. policies developed using Reinforcement
Learning or produced by hand-crafted baseline systems.
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