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Abstract—We investigate the problem of automatically de-
tecting unnatural word-level segments in unit selection speech
synthesis. We use a large set of features, namely, target and join
costs, language models, prosodic cues, energy and spectrum, and
Delta Term Frequency Inverse Document Frequency (TF-IDF),
and we report comparative results between different feature types
and their combinations. We also compare three modeling methods
based on Support Vector Machines (SVMs), Random Forests, and
Conditional Random Fields (CRFs). We then discuss our results
and present a comprehensive error analysis.

I. INTRODUCTION

Unit selection speech synthesis simulates neutral read aloud
speech quite well, both in terms of naturalness and intelligi-
bility [1]. However, when the speech corpus used for building
a unit selection voice does not provide good coverage, i.e.
not every unit is seen in every possible context, there can
be a significant degradation in the quality of the synthesized
speech. In this paper our goal is to investigate whether it is
possible to automatically detect poorly synthesized segments
of speech.

There are two potential applications of this work. First,
having information about the unnatural speech segments can
be used as an additional criterion together with the objective
criteria of target and join costs for selecting the optimal
sequence of units. Because, as we will see below, the algorithm
that detects the problematic segments of speech is trained
using information from subjective evaluations, this means that
with this approach we can select the optimal sequence of units
based on a combination of objective and subjective measures.
Second, this work can be used for paraphrasing the parts of the
sentence that are poorly synthesized. This can be particularly
useful in cases where the speech synthesizer consistently
fails to synthesize some hard to pronounce words that could
be substituted with more common and easier to pronounce
synonyms. Alternatively, the speech synthesizer could be given
as input a list of possible realizations of a sentence and use
the error detection algorithm to pick the best one. This can be
very important in applications (e.g. adaptive spoken dialogue
systems) where sentences are generated on the fly.

The automatic detection of errors in speech synthesis is a
research topic that has recently emerged and has many com-
monalities with research on automatically assessing spoken
language of language learners where the goal is to detect

the segments of an utterance with errors in pronunciation
or intonation [2], [3]. Below we give a summary of related
work in the literature. [4] used acoustic features and a Support
Vector Machine (SVM) classifier as well as human judgements
to detect synthetic errors on pitch perception generated by a
HMM-based unit selection speech synthesizer. The works of
[3] and [4] are similar in the sense that they both employ
acoustic features, SVMs, and human judgements. However,
[3] aim to detect errors in human speech whereas [4] target
synthesized speech. [5], [6] employed unit selection costs,
phone and word level language models, and regression models
to predict among a list of synthetic sentences (paraphrases of
the same sentence) the one that is ranked first by humans. They
used a unit selection speech synthesizer and incorporated in
their models information from human judgements. [7] studied
the automatic detection of abnormal stress patterns in unit
selection speech synthesis using the pitch, amplitude, and
duration features.

Our work is more relevant to the work of [4], [5], [6] in
the sense that we all use human judgements. More specifically,
[5], [6] focus on predicting the overall quality of a synthesized
utterance and thus use human judgements on whole synthe-
sized utterances. On the other hand [4] and our work focus
on detecting particular segments of poorly synthesized speech
and thus we both use human judgements about the quality of
individual words. In [4] the human judges report how natural
or unnatural a word sounds with regard to articulation, pitch,
and duration. However, their automatic detection system is
trained to detect only pitch errors. Our human judges report
how natural or unnatural a word sounds in general and our
system is trained to predict such general errors, i.e. errors that
could be due to different causes including pitch, articulation,
duration, and poor quality of selected units.

Unlike previous approaches in the literature that considered
only a limited set of features, we use a large set of features,
namely, target and join costs, language models, both low and
high level prosodic cues, energy and spectrum, and Delta
Term Frequency Inverse Document Frequency (TF-IDF), and
we report comparative results between different feature types
and their combinations. To our knowledge this is the first
study that compares the impact of such a large number of
features of different types on automatic error detection in
speech synthesis. We also compare three modeling methods
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based on SVMs, Random Forests, and Conditional Random
Fields (CRFs). To our knowledge this is the first time that
a sequential modeling technique (i.e. CRFs) is used for such
a task. Although we experiment with a unit selection speech
synthesizer many of our features are relevant to HMM-based
speech synthesis too.

In section II we present our data set. Section III describes
the different types of features that we considered. Section IV
presents the classifiers that we used for our experiments.
Section V describes our experiments and results. In section VI
we discuss our results and present a comprehensive error
analysis. Finally in section VII we present our conclusions.

II. DATA

We took the sentences of three virtual characters in our
spoken dialogue negotiation system SASO [8] and synthesized
them using the state-of-the-art CereVoice speech synthesizer
developed by CereProc Ltd [1]. This is a diphone unit-
selection speech synthesis engine available for academic and
commercial use. We used a voice trained on read speech also
used in [9].

Our data is structured as follows: 725 sentences (6251
words) of virtual character 1, 184 sentences (1805 words) of
virtual character 2, and 154 sentences (1467 words) of virtual
character 3. This ensured that there was some variation in
the utterances. All utterances were synthesized with the same
voice. The utterances of virtual characters 1 and 2 were used
for training and the utterances of virtual character 3 for testing.
An annotator (native speaker of English) annotated the poorly
synthesized (unnatural) segments of speech on the word level
using two labels (natural vs. unnatural). Two other annotators
proficient in English annotated around 100 utterances and we
measured inter-annotator reliability, which was found to be low
(Cohen’s kappa [10] was 0.2) and shows the complexity of the
task. To improve the inter-annotator reliability we decided to
annotate only the worst segment (on the word-level) of each
utterance. This raised kappa to 0.5.

For our experiments we use the annotations of the native
speaker of English. In the following we will refer to the data
set with the annotations of only the worst segments as Data Set
I and to the data set with the annotations of all the unnatural
(bad) segments as Data Set II. The statistics for these two
data sets are as follows. Data Set I contains 7456 natural
and 600 unnatural segments in its training subset, and 1365
natural and 102 unnatural segments in its test subset. Data Set
II contains 6999 natural and 1057 unnatural segments in its
training subset, and 1304 natural and 163 unnatural segments
in its test subset.

III. FEATURES

A. Energy and spectral features
We first consider energy and spectral features to investigate

how they are related to the quality of synthesized speech
segments. We extracted 3900 low-level descriptors (LLD)
using openSMILE (http://sourceforge.net/projects/opensmile/).
Table I shows the energy and spectral features, which include
4 energy related LLD and 50 spectral LLD. We then apply 33
basic statistical functions (quartiles, mean, standard deviation,
etc.) to the above energy and spectral feature sets.

TABLE I
Energy and spectral feature sets.

Feature Sets Features

Energy Sum of auditory spectrum
Sum of RASTA-style filt. auditory spectrum
RMS Energy, Zero-Crossing Rate

Spectrum RASTA-style filt. auditory spectrum -
bands 1-26 (0-8kHz)
MFCC 1-12
Spectral energy 25-650Hz 1k-4kHz
Spectral Roll Off Point 0.25 0.50 0.75 0.90
Spectral Flux, Entropy, Variance, Skewness,
Kurtosis and Slope

B. Prosodic, voice-quality and prosodic event features

We extracted 31 standard prosodic features to test the
contribution of prosodic cues separately. To augment low-
level prosodic features, we also experimented with AuToBI
(http://eniac.cs.qc.cuny.edu/andrew/autobi/index.html) to auto-
matically detect pitch accents, word boundaries, intermediate
phrase boundaries, and intonational boundaries in utterances.
The intuition behind this approach is that AuToBI can make
binary decisions for prosodic events of each word, which may
complement low-level prosodic cues and inform us about un-
natural segments. AuToBI requires annotated word boundary
information; since we do not have hand-annotated boundaries,
we use the Penn Phonetics Lab Forced Aligner [11] to align
each utterance with its transcription. We use AuToBI’s models
to identify prosodic events in our corpus. Table II provides an
overview of the prosodic feature sets in our system.

TABLE II
Prosodic feature sets.

Feature Sets Features

Pulses # Pulses, # Periods, Mean Periods,
SDev Period

Voicing Fraction, # Voice Breaks, Degree,
Voiced2total Frames

Jitter Local, Local (absolute), RAP, PPQ5
Shimmer Local, Local (dB), APQ3, APQ5, APQ11
Harmonicity Mean Autocorrelation, Mean NHR,

Mean NHR (dB)
Duration Seconds
F0 Min, Max, Mean, Median, SDev, MAS
Energy Min, Max, Mean, SDev
Events Pitch accents, word, intermediate phrase,

and intonational boundaries

Num: Number. SDev: Standard Deviation. RAP: Relative Average Perturba-
tion. PPQ5: 5-point Period Perturbation Quotient. APQn: n-point Amplitude
Perturbation Quotient. NHR: Noise-to-Harmonics Ratio. MAS: Mean Absolute
Slope.

C. Delta TF-IDF

Term Frequency Inverse Document Frequency (TF-IDF) is
a standard lexical modeling technique in Information Retrieval
(IR). In this task, we are interested in using TF-IDF to model
rare terms (words) in our training set that consistently lead to
synthesized segments of poor quality. The standard TF-IDF
vector of a term t in an utterance u is represented as V(t,u):
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V (t, u) = TF ∗ IDF =
C(t, u)
C(v, u)

∗ log
|U |

∑
u(t)

TF is calculated by dividing the number of occurrences of
term t in the utterance u by the total number of tokens v in
the utterance u. IDF is the log of the total number of utterances
U in the training set, divided by the number of utterances in
the training set in which the term t appears. u(t) can be viewed
as a simple function: if t appears in utterance u, then it returns
1, otherwise 0.

To improve the original TF-IDF model and further weight
each word by the distribution of its labels in the training set,
we utilize the Delta TF-IDF model [12], which is used in
sentiment analysis. To differentiate between the importance of
words of equal frequency in our training set, we define the
Delta TF-IDF measure as follows:

V (t, u) =
C(t, u)
C(v, u)

∗ log
|U |

∑
u(i nat)/

∑
u(j unn)

Here, u(i nat) is the ith normal segment in the training data
while u(j unn) is the jth segment that is labeled as unnatural.
Instead of summing the u(t) scores directly, we now assign
a weight to each segment. The weight is the sum of the
total number of normal segments vs. the total number of
unnatural segments that contain this particular term in our task.
The overall IDF score of words important to identifying the
unnatural segment will thus be boosted, as the denominator of
the IDF metric decreases compared to the standard TF-IDF.

D. Language modeling
Using Delta TF-IDF, we are able to model the lexical cues

and rare terms in the training and testing data sets. Moreover,
in the task of unit-selection speech synthesis, infrequent and
under-resourced phoneme and word recordings in the database
will also cause unnatural synthetic segments. As a result, there
is also a need to understand the distribution of phonemes,
words and their n-gram distributions in the database. Another
obvious advantage of language modeling is that n-grams can
capture contextual cues.

To address this issue, we train a triphone language model
and a trigram (on the word level) language model us-
ing the CMU Statistical Language Modeling (SLM) Toolkit
(http://www.speech.cs.cmu.edu/SLM info.html). In the testing
mode, for each word segment instance, we take the perplexity
of its trigram context, previous trigram, and next trigram
as features in the experiment. Meanwhile, we repeat the
same procedure for the corresponding phonemes of the word
instance to get the phonetic perplexity from the triphone
language model. We also use unigram frequency (word occur-
rence in the database), frequency of phonemes in the database,
and length as features.

E. Costs
In unit-selection speech synthesis, cost functions are widely

used to select good units for synthesis. There are two types of
costs: target (linguistic) and join (acoustic). A cumulative or
concatenation cost can be calculated by summing the previous
costs. In our implementation, we calculate word level target
and join costs, and cumulative costs by summing up diphone-
level costs.

IV. CLASSIFIERS

A. WEKA

To analyze how different features influence the
quality of synthesized speech, we use WEKA
(http://www.cs.waikato.ac.nz/ml/weka) to classify normal
segments and segments of poor quality. One notable machine
learning problem in this task is the unbalanced data set. To
address this issue, we conduct downsampling on our training
set. During the testing stage, we preserve the original test
set distribution to conform to the real testing environment.
Meanwhile, we also report results on a downsampled test set
(see section V).

When conducting experiments on the original test set, we
use Random Forests to classify low-dimensional features,
including prosody, Delta TF-IDF, language modeling (both on
the phone and word level), and costs. In the downsampled test-
ing scenarios, we use the RandomSubSpace meta learning with
REPTree. When modeling high-dimensional acoustic features
(energy and spectrum) in both the original and downsampled
test sets, we use the Radial Basis Function (RBF) kernel
Support Vector Machine (SVM) classifier.

Combining features from different domains is always a
challenging issue, especially when combining lexical with
high-dimensional acoustic features. In this study, we first
linearly combine all features in a RBF kernel SVM, namely,
a bag-of-all-features model. Then, to cope with the dimen-
sionality problem, we use prosodic features to replace and
approximate some characteristics of high dimensional acoustic
features, and perform a RandomForest/RandomSubSpace meta
learning when combining with other lexical, contextual, and
cost features.

B. Sequential modeling: CRFs

We also use a CRF-based classifier to see if a sequential
modeling technique can lead to better results. For training
and testing the CRF models we use the CRF++ toolkit
(http://crfpp.sourceforge.net).

We consider 3 different configurations. In the first config-
uration, for each word we use the features of that particular
word (configuration 1). In the second configuration, for each
word we use the features of that word together with all the
features of the previous and following word (configuration 2).
Finally, in the third configuration, for each word we use the
features of that word together with all the features of the two
preceding and two succeeding words (configuration 3). Thus in
both configurations 2 and 3 we take into account the preceding
and succeeding context of the word-level segment that we want
to classify as natural or unnatural.

V. EXPERIMENTS

We conduct two experiments. First, we experiment with
different feature streams in the feature space, and compare
their individual contributions using WEKA. Second, we ex-
periment with CRFs. Our test set is presented in section II. In
the first experiment, we use Data Set I (worst segments) and
we examine how different features contribute to our system,
and also explore the best combinations using these features.
To make the results more comparable in the downsampled
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scenarios, we choose not to use randomly downsampled folds
or a single arbitrary fold. Instead, we use a fixed and balanced
training set, as well as all folds of a fixed and balanced test
set. We repeat experiments on each test fold, and compute the
mean precision, recall, and F-measure. Our results are given
in Table III.

TABLE III
Comparing different feature streams (downsampled), Data Set I.

Features Precision Recall F1

LM 0.604 0.603 0.6
DTFIDF 0.633 0.616 0.604
Costs 0.615 0.611 0.607
Energy 0.63 0.627 0.624
Prosody 0.649 0.644 0.642
Spectrum 0.683 0.682 0.682
Energy+Spectrum 0.673 0.672 0.672
Energy+Spectrum+Prosody 0.687 0.686 0.686
Bag-of-all-features 0.68 0.675 0.672
LM+DTFIDF+Costs 0.707 0.705 0.705
+Prosody

LM: Language modeling features. DTFIDF: Delta TF-IDF.

When examining feature streams individually in the down-
sampled scenarios, we observe a weighted F-measure of
0.6, 0.604, and 0.607 for language modeling, Delta TF-IDF,
and cost features, respectively. Then, we obtain a significant
improvement by using the energy features. Next, we explore
how prosodic and spectral features perform. The best result
we observe from a single feature stream comes from the
spectral features. The weighted F-measure has reached 0.682.
By combining all the acoustic streams, we achieve a F1 score
of 0.686. We also notice that when linearly combining all
features, the result is worse than using spectral features alone.
The best result we achieve is the combination of language
modeling, Delta TF-IDF, costs and prosodic features in a
RandomSubSpace meta-learning scheme. The weighted F1
score is 0.705, which significantly outperforms the RBF SVM
method of using all acoustic feature streams.

Then, we repeat the same experiments in the test set of
the original distribution (non-downsampled) (see Table IV).
We observe similar results as the downsampled test, with
the exceptions of the prosody and cost features. When tested
alone, cost features have a notable weighted recall of 0.742,
which boosts its F1 score to 0.801. Prosodic features are also
shown to be informative, with a recall of 0.712 and F1 of
0.781, surpassing all other acoustic features. When looking at
the results for individual classes, we observe consistent results
(see Table IV). We also report results for the best combination
of features (prosodic, language modeling, cost, and TF-IDF
features) training on the original non-downsampled training
set and testing on the original non-downsampled test set (see
Table IV). We can see that for the unnatural segments precision
increases significantly at the expense of recall, while the F-
score drops slightly. This is due to the fact that here we
are not using downsampling. On the other hand the WEKA
models (trained on the downsampled training set) have a lower
precision and higher recall because they were trained on a
balanced set with an equal number of natural and unnatural
segments.

In the second experiment we perform classification using
CRFs and the best features found in the previous experiment.
Here we use the original sets for both training and testing, i.e.
we do not perform downsampling to preserve the sequences
of words. We report results for 3 different configurations as
explained above (see Table IV). For the unnatural segments
the results in terms of F-measure are a little better than the
WEKA results.

VI. DISCUSSION AND ERROR ANALYSIS

In Figure 1 we can see a plot of the weighted and un-
weighted accuracy for different confidence scores. Weighted
accuracy takes into account the fact that the test set is
unbalanced. We can see the plots for WEKA trained on the
downsampled training set and tested on the original test set
and the 3 CRF models trained on the original training set and
tested on the original test set (Data Set I). For the results we
report in Table IV we use a confidence threshold of 0.5.

Fig. 1. A weighted/unweighted accuracy graph with different confidence
thresholds (Data Set I).

In Figure 2 we can see the precision-recall curve for the
unnatural segments and for the experiments using the best
combination of features (prosodic, language modeling, cost,
and TF-IDF features), and WEKA trained on the downsampled
training set and tested on the original test set and the 3 CRF
models trained on the original training set and tested on the
original test set (Data Set I).

Our results are similar with the results of [4] in the sense
that high precision can be achieved only at the expense of low
recall. It is hard to make direct comparisons though because
of the different corpora, features, and annotation schemes. In
the results presented above we have used Data Set I which
is annotated with the worst segments per utterance only. [4]
report an F-score close to 0.5 whereas ours is close to 0.35.
However, [4] experiment only with pitch errors, which are very
frequent in a language such as Mandarin Chinese. We try to
detect all errors (in English), which is a much harder task. [3]
on the other hand who experimented on human speech (also in
Mandarin Chinese) report similar results to [4] based only on
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TABLE IV
Comparing different feature streams and classifiers (test on original non-downsampled distribution), Data Set I.

Features W-Prec W-Recall W-F1 N-Prec N-Recall N-F1 U-Prec U-Recall U-F1

WEKA (train on downsampled distribution)

LM 0.884 0.652 0.738 0.943 0.667 0.781 0.094 0.461 0.156

DTFIDF 0.878 0.652 0.737 0.938 0.67 0.782 0.084 0.402 0.138
Costs 0.891 0.742 0.801 0.948 0.764 0.846 0.123 0.441 0.192
Energy 0.896 0.682 0.759 0.954 0.691 0.802 0.119 0.559 0.196
Prosody 0.9 0.712 0.781 0.957 0.722 0.823 0.133 0.569 0.215
Spectrum 0.909 0.671 0.752 0.967 0.669 0.791 0.136 0.696 0.227
Energy+Spectrum 0.907 0.669 0.751 0.965 0.669 0.79 0.132 0.676 0.222
Energy+Spectrum+Prosody 0.91 0.671 0.752 0.968 0.668 0.791 0.137 0.706 0.23
Bag-of-all-features 0.905 0.738 0.8 0.961 0.748 0.841 0.151 0.598 0.241
LM+DTFIDF+Costs+Prosody 0.907 0.783 0.831 0.962 0.799 0.873 0.177 0.578 0.271

WEKA (train on original non-downsampled distribution)

LM+DTFIDF+Costs+Prosody 0.921 0.936 0.917 0.94 0.994 0.967 0.667 0.157 0.254

CRFs (train on original non-downsampled distribution)

LM+DTFIDF+Costs+Prosody(C1) 0.923 0.937 0.923 0.945 0.990 0.967 0.639 0.225 0.333
LM+DTFIDF+Costs+Prosody(C2) 0.927 0.939 0.922 0.943 0.994 0.968 0.714 0.196 0.308
LM+DTFIDF+Costs+Prosody(C3) 0.918 0.935 0.916 0.94 0.993 0.966 0.615 0.157 0.25

C1-3: Configuration 1-3. ”W-”: weighted measure. ”N-”: the class of natural segments. ”U-”: the class of unnatural (worst only) segments.

Fig. 2. The Precision-Recall curve for the unnatural (worst only) class (Data
Set I).

the 13 most frequent mispronounced phonemes that account
for about 70% of all mispronunciations in their data set. Thus
although our F-score is a little lower than the F-scores of these
two works we can still claim that the results are comparable
given that our task is much more difficult.

We performed some error analysis to identify the type of
errors that our classifiers were better or worse at. So we
divided our errors into two categories: pitch and concatenation
errors. Everything that is not an error in the pitch is considered
to be a concatenation error. So when the word sounds clear
and intelligible but the pitch is wrong we annotate this as a
pitch error. When the word does not sound clear or intelligible
because the wrong units have been selected or because there
are problems when the units are concatenated we annotate

these as concatenation errors. Of course sometimes a word can
have problems both with regard to pitch and intelligibility. In
that case the error is annotated as concatenation error, although
subjectivity issues may arise. Two annotators proficient in
English annotated our test set with these two labels and the
kappa score for inter-annotator reliability was 0.45. Out of the
102 errors in the test set, annotator 1 marked 41 pitch and
61 concatenation errors, whereas annotator 2 marked 46 pitch
and 56 concatenation errors. Table V shows the accuracy of
our classifiers for both annnotations. We report WEKA results
for both training on the downsampled and the original training
data (Data Set I). All models are tested on the original test set
(Data Set I). The best combination of features has been used.

TABLE V
Pitch and concatenation errors accuracy.

Pitch Concat
accuracy accuracy

Model Annot 1 Annot 2 Annot 1 Annot 2

WEKA downsampled 63.4 58.7 47.5 50
WEKA original 14.6 19.6 16.4 12.5
CRF C1 17.1 23.9 26.2 21.4
CRF C2 12.2 19.6 24.6 19.6
CRF C3 9.8 17.4 19.7 14.3

As mentioned above, another notable difference between
our work and the works of [3] and [4] is that we target only
the worst segments in an utterance whereas they target all bad
segments. The reason that we decided to experiment on the
worst segments only (Data Set I) is because they gave us a
better inter-annotator reliability. Unfortunately, [3] and [4] do
not report results on inter-annotator reliability. The danger with
annotating only the worst segments is that the rest of the bad
samples will be considered as good examples by the classifiers,
which can be confusing. So to check if this is an issue we
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TABLE VI
Comparing different feature streams and classifiers (test on original non-downsampled distribution).

Features W-Prec W-Recall W-F1 N-Prec N-Recall N-F1 U-Prec U-Recall U-F1

WEKA (train on downsampled distribution,
bad segments)

LM+DTFIDF+Costs+Prosody (test on worst) 0.907 0.748 0.807 0.963 0.758 0.848 0.158 0.608 0.251

LM+DTFIDF+Costs+Prosody (test on bad) 0.862 0.754 0.793 0.939 0.774 0.848 0.247 0.595 0.35

WEKA (train on original non-downsampled distribution,
bad segments)

LM+DTFIDF+Costs+Prosody (test on worst) 0.914 0.93 0.919 0.945 0.982 0.963 0.5 0.235 0.32

LM+DTFIDF+Costs+Prosody (test on bad) 0.896 0.907 0.883 0.911 0.992 0.95 0.771 0.227 0.351

CRFs (train on original non-downsampled distribution,
bad segments)

LM+DTFIDF+Costs+Prosody(C1) (test on worst) 0.908 0.911 0.909 0.95 0.955 0.952 0.347 0.324 0.335

LM+DTFIDF+Costs+Prosody(C1) (test on bad) 0.87 0.89 0.876 0.916 0.964 0.939 0.505 0.294 0.372
LM+DTFIDF+Costs+Prosody(C2) (test on worst) 0.906 0.913 0.908 0.948 0.958 0.952 0.348 0.304 0.325
LM+DTFIDF+Costs+Prosody(C2) (test on bad) 0.863 0.886 0.87 0.912 0.964 0.937 0.472 0.258 0.333
LM+DTFIDF+Costs+Prosody(C3) (test on worst) 0.906 0.914 0.91 0.947 0.961 0.954 0.354 0.284 0.315
LM+DTFIDF+Costs+Prosody(C4) (test on bad) 0.866 0.889 0.872 0.912 0.969 0.939 0.5 0.252 0.335

C1-3: Configuration 1-3. ”W-”: weighted measure. ”N-”: the class of natural segments. ”U-”: the class of unnatural segments. Bad: unnatural segments of
Data Set II. Worst: unnatural segments of Data Set I.

performed experiments training on data annotated with all the
unnatural segments (not only the worst segments), i.e. the train
portion of Data Set II, and tested on the data annotated only
with the worst unnatural segments (test portion of Data Set I)
and the data annotated with all the unnatural segments (test
portion of Data Set II). The results are reported in Table VI
and as we can see there is some improvement in the F-scores
(the highest is 0.372), which brings our scores even closer to
the scores of [3] and [4] (even though our task is harder).

All the experiments and results above show that the auto-
matic detection of unnatural synthesized segments is a very
hard problem, far from being solved. The main issue is that it
is hard even for humans to agree on what constitutes an error.
In the future we intend to do further analysis and perform work
towards correctly categorizing the types of errors. We believe
that if we increase inter-annotator reliability, we will then be
able to map different features to different error categories and
our results will improve significantly.

VII. CONCLUSIONS

We performed a study on the automatic detection of unnat-
ural word-level segments in unit selection speech synthesis.
This information can be used for helping the synthesizer
select correct units (together with the synthesis costs) and for
paraphrasing.

We experimented with various features and concluded that
the best combination of features is prosodic, language mod-
eling, costs, and TF-IDF features. We also compared three
modeling methods based on SVMs, Random Forests, and
CRFs. Our results are in line with other related work in the
literature, which is promising given that our task is much
harder than the tasks in previous work.
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