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ABSTRACT

Each time an Interactive Dialogue System (IDS) is adapted to a
new domain, the language modeling and dialogue strategy
modules must be modified to fulfil the new requirements. In this
paper we present an algorithm for creating Stochastic Finite-
State Netwoks (SFSN) for language modeling of dialogue states
in an IDS. The resulting SFSNs are evaluated in terms of
perplexity and recognition performance. Moreover, we present a
method that enables the designer of the dialogue strategy to
investigate system performance by employing diagnostic
evaluation during the initial phases of a system’s development.
The recognition success rate taken from the previous language
model evaluation combined with the proposed dialogue
mathematical modeling, can be used to predict an IDS’s
behaviour by relating dialogue parameters (e.g. recognition
success rate, number of turns, dialogue strategy) with the final
system’s performance. Thus the effort during global system
assessment is reduced since we have diagnostic measures in
advance.

Keywords: Interactive Dialogue Systems, language models,
Stochastic Finite-State Networks, dialogue strategy, diagnostic
evaluation.

1. INTRODUCTION

The first part of this paper contains the description of a method
for creating stochastic networks. That is an algorithm
introduced in [1] is now extended and evaluated in terms of
perplexity and recognition performance. This technique has the
advantage of the automatic creation of word/phrase classes
during the construction of a Hidden Markov Model (HMM) that
is transformed to a SFSN. In most existing systems, clusters are
created manually or if automatic techniques are used, the
clustering procedure is independent of the construction of the
final models. Thus the language models require already formed
clusters in order to become more compact and robust. Our
algorithm does not require the preexistence of classes but
creates them automatically and simultaneously with the
construction of the HMM. The states and observations of the
HMM correspond to the word/phrase classes and words/phrases
respectively. The HMM is transformed to a SFSN where the
nodes are the word/phrase classes and the arcs are the state-
transition probabilities of the HMM. The observation
probabilities of the HMM correspond to the probabilities within
the classes (sub-networks) of the SFSN.

The use of stochastic automata to represent statistical language
models has been recently proposed [2][3] with the aim to handle
accurate language models in a one-step decoding procedure. In
[2] a back-off n-gram language model is represented through a
non-deterministic Stochastic Finite-State Automaton (SFSA),
which is called Variable N-gram Stochastic Automaton
(VNSA). In [3] the use of smoothed K-Testable Language in the
Strict Sense (K-TLSS) regular grammars allowed the creation of
a deterministic SFSA. In VNSA, and SFSA based on K-TLSS,
the history size has a value of up to N-1 and K-1 respectively.
Our algorithm produces a deterministic SFSN. Moreover, it is
structured in such a way that allows for longer distance
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dependencies to be considered, and results in variable history
sizes with no specific upper limit. That is the upper limit
depends on the number of words/phrases of the sentences used
as training data and the way these sentences are associated.

The second part of this work consists of the presentation of a
method that enables the designer of the dialogue strategy to
employ diagnostic evaluation during the initial phases of a
system’s development, which reduces the effort for global
system assessment. The relationship between these two parts is
that the recognition rate derived from the evaluation of the
language models in each dialogue state is the input to the
strategies used in the second part.

Although much work has been done on mathematical modeling
of the dialogue control [4], very few results are available on the
aspect of predicting a dialogue system’s behavior by simply
correlating a-priori knowledge such as recognizer’ performance
and dialogue strategy with the system’s performance. Other
authors, are trying to decide on optimum dialogue strategy
either purely objectively [5] or taking into account users’
perceptions using some form of a cost function and seeking for
minimization of this function. Although the above techniques
give a method for optimum strategy selection, they are based on
information derived from actual dialogues obtained usually via
black-box assessment. Furthermore, questionnaires filled out by
system users may be used, in order to capture qualitative and
subjective system characteristics.

In our work the notion of SUB-TASK is introduced, which is the
part of the dialogue devoted to a single intermediate level task
(e.g. supplying the system with the departure date of a trip).
Although the term “turn” is usually defined as a stretch of
speech spoken by one party in a dialogue, its use here indicates
the set of system-user exchanges necessary for the completion
of the sub-task. A sub-task includes one or more dialogue states
(e.g. request for the departure time and confirmation). Thus the
recognition rate of a sub-task is the weighted mean value of the
recognition rates of each dialogue state of the sub-task. The use
of weighted coefficients is justified by the fact that dialogue
states have different levels of difficulty in recognition.

Regarding finite state IDSs a directed graph determines the
dialogue flow and each sub-task is represented by a node. The
transition from one node to another depends on the dialogue
history, the current user answer and the dialogue strategy. Our
approach is based on the assumption that if the designer has the
characteristics of each node a-priori, and the graph topology, he
can predict the behavior of the system without actually testing
it. For IDSs, the global system variables of interest are the
probability of success P and the expected number of turns z. As
an example, given a simple system, with »n sub-tasks S, S5, ..., S,
executed in series with sub-task parameters P; (probability of
successfully finishing the sub-task 7) and z; (average number of
turns for the sub-task 7), the probability of dialogue success for
the system would be the product of P;, P=IIP; and the expected
number of turns the sum of z;, #=Xu;. To analyze the behavior
of the system, the designer should know in advance each sub-



task’s behavior, given the dialogue control strategy chosen for
the sub-task. We will investigate the following cases:

1. Immediate advance. There is no confirmation for the
recognized item. Usually it is used when the recognition
accuracy is very high.

2. Sub-task repetition until success. This strategy presumes
confirmation by the user. It is assumed that if the recognition is
correct, the user confirms the result and the dialogue is
forwarded to the next sub-task, otherwise the same sub-task is
repeated.

3. Sub-task repetition for a maximum of m times. The user
confirms the recognition result. On success, the dialogue is
progressed to the next sub-task. On failure, the sub-task is
repeated for a maximum of m times.

4. Confidence level examination. The dialogue is forwarded to
the next node if the confidence level of the recognition is
greater than a prescribed threshold, otherwise the sub-task is
repeated. In this case, no confirmation is used.

The structure of this paper is as follows: In section 2 the
algorithm for the creation of the language model is described
and evaluated. Section 3 explains how the diagnostic evaluation
of dialogue strategies is implemented. Finally, in section 4,
some conclusions are drawn and possible future work is
investigated.

2. LANGUAGE MODEL

Algorithm description

At first a set of sentences is selected to train the initial HMM.
These sentences can be derived from simulation experiments,
from the system itself, from the application grammar, be
manually created or be produced by a combination of these
methods. Our algorithm takes the set of sentences for granted,
regardless of how they are produced. However, as it will be
shown in the tests carried out, the best results are obtained by
mixing sentences taken from the use of the system with
sentences derived from grammar-based networks. For every
new sentence S the Viterbi algorithm is activated to check
whether this sentence could be extracted by the current HMM.
The probability assigned to the sentence S is compared with a
threshold 7, which is defined for the HMM.

If the probability assigned to S exceeds or is equal to 7' (Case 1),
or if a part of S fits in an existing HMM path (Case 2), then
unknown observations of S, that is words/phrases, are able to
match existing states, i.e. word/phrase clusters, and become
members of them. In this way, the clustering procedure takes
place simultaneously with the construction of the HMM. Taking
into consideration the modified clusters and sentences that are
subsets of S, the HMM is updated. That is, the observation
probabilities within the existing states (clusters) are reestimated
and new states may be added (for the parts of sentences that
cannot match existing states). Subset sentences of S are the
sentences, all the words/phrases of which are contained in
sentence S. The word/phrase order may be considered or not be
taken into account. b. If the probability assigned to S is smaller
than 7" and no parts of S fit in existing HMM paths, the already
existing states (clusters) are not updated, but new ones are
created to incorporate the subset sentences of S into the HMM.
In either case (a) or (b), a new threshold for the updated HMM
is estimated, which replaces 7. Then a new sentence is selected,
the probability of which is going to be compared with the
updated threshold. The procedure iterates until no more
sentences are available. Throughout the iterations, phrases may
be formed (by using simple rules or by taking into consideration
sophisticated syntactic and semantic restrictions), during each
sentence’s processing, that is before Viterbi is applied. After the
final HMM has been constructed, it is transformed to a SFSN.

Figure 1. (a) Grammar-based network, (b) bigram, (c) hybrid
network (WPO), and (d) hybrid network (NWPO).

The type of the HMM we use is discrete. Two types of
transition probabilities are considered: transitions with equal
probability from one state to another and probabilities derived
from the number of times a word/phrase class appears after
another. Thus if a word/phrase class u is followed by n
word/phrase classes in the training data, then for the case of
equal probabilities, the probability that a word/phrase class w
occurs after the word/phrase u would be P(w | u) =1/ n (1). On
the other hand, if the number of times class w follows u is
considered, then P(w | u) = N(u, w) / N(u) (2) where N(u, w) is
the number of occurrences of class w after class u# and N(«) the
number of occurrences of class #. In the same way,
observations, i.e. words/phrases, can have equal probabilities
within a state (class), or the probabilities are formed according
to the frequency of occurrence of the words/phrases. In the
former case if a word/phrase w belongs to a class C(w), which
has » members, then the probability of this word/phrase in the
class is P(w | C(w)) = 1 / n (3). In the latter case P(w |C(w)) =
N(w) / N(C(w)) (4) where N(w) is the number of occurrences of
word/phrase w and N(C(w)) the number of occurrences of class
C(w), that is the sum of occurrences of the words, which belong
to class C(w).

In case where the word/phrase order is retained (WPO-—
Word/Phrase Order), if S is the sequence of words/phrases v; v,
V3, ..., v, then a subset sentence of S would have the form v;, v,
Vis s Vi 1 S0 <j<k< . <m<n.If the word/phrase order
does not pose a constraint (NWPO—-No Word/Phrase Order), the
subset sentences of S are v;, v, Vi, ..., Vi [ <1, j, k, m < n. Every
time Viterbi is activated, when we use the longest of the training
sentences as the new sentence S and have the NWPO case, then
more sentences become subset sentences directly, and the
computation time is reduced. In Figure 1, a grammar-based
network, the corresponding bigram and the two hybrid networks
derived from our method are depicted. In Figure 1c (WPO) in



most paths the complete history is retained. However, in Figure
1d (NWPO) some part of history is lost due to the existence of
loops. In general WPO allows for greater history size than
NWPO.

In Case 2 where only a part and not the whole sentence matches
an existing path straightforwardly or by shift, the candidate
matches between new observations and existing states, may be
accepted according to some criteria such as frequency of
occurrence, position, number of words, word order, if a
word/phrase sequence appears more than once in the path etc. If
these criteria are very strict, then it is more likely that the
candidate matches will be rejected, which will result in a model
where grammatical structure supersedes stochastic features. On
the other hand, loose criteria will allow matches that do not
conform to grammatical rules and may also cause insertions of
loops. That is the resulting network will come closer to the n-
gram structure. Some additional criteria could also be added so
that the clusters are correctly formed e.g. words are divided in
functional and non-functional words or their Part-Of-Speech
(POS) could be considered. Thus a functional word cannot be
clustered with a non-functional one and words that do not have
the same POS cannot belong to the same class. In the same way
phrases of different types may not be allowed to be in the same
cluster even if all the other criteria are met. These additional
constraints (apart from POS) have been taken into account in
tests and have resulted in improved performance.

Evaluation

In order to test our algorithm we used data from 3 different
IDSs: ACCeSS (EU project LE-1 1802, a system for the
automation of call center services of a car insurance company),
IDAS (EU project LE-48315, an Interactive telephone-based
Directory Assistance Services system), and a call-routing IDS
developed by Knowledge S.A. We used data from 49 dialogue
states (38 of ACCeSS, 7 of IDAS and 4 of the call-router).

Three sets of experiments were carried out. In the first one (Test
1) we considered as training data for our algorithm, the
sentences derived from the grammars of the 3 applications. This
aimed at comparing grammar-based networks with our hybrid
models under the same conditions that is with exactly the same
training data. The appropriate grammar was loaded according to
the IDS and the dialogue state. We carried out experiments with
word/phrase classes for both WPO and NWPO. Two types of
probability estimations were considered. In the former case,
which we call T1, equations (1) and (3) were used to compute
the transition and within class probabilities respectively. In the
latter case (T2), we applied equations (2) and (4). Phrases were
formed without using sophisticated syntactic or semantic rules
but by considering words with very strong correlation (e.g. /
would like to, etc.). When we extracted the phrases for our
training set, we modified the grammar networks to take the
phrases into account so that we have phrase-based grammar
networks too.

The precision and recall parameters are valid metrics for
evaluating the performance of our algorithm regarding the
clusters formed. We define as C the number of correct clusters
formed by our method, 7 the total number of clusters, and 7C
the total number of correct clusters, which can be derived from
the training data. Then: Precision = C /T and Recall = C / TC.

It is very crucial that the precision is high so that no ill-formed
clusters are created, since this would result in associating
irrelevant words/phrases and in the end in increasing perplexity.
Thus very strong thresholds are set to ensure that only correct
clusters are created. In Table 1, the precision and recall values
are depicted. Computing the average is not an accurate but an

indicative metric in our case since the 49 networks are not
equivalent in structure. Sometimes a T1 network can have
different precision and recall from the corresponding T2
network. We have observed that often the T2 networks have
higher precision but lower recall than the T1 ones. That is they
are more reliable in forming correct clusters but on the other
hand as their probabilities are based on the exact number of
occurrences, sometimes they fail to match words/phrases, which
are strongly correlated but that do not have equivalent
occurrences. In the same way in the WPO case the precision is
higher since the word/phrase order is taken into consideration in
forming clusters. However, networks derived from the NWPO
case tend to have higher recall values. Moreover, phrase-based
(P) networks generally outperform word-based (W) ones.

Test 1 Test 2 Test 3
WPO | NWPO | WPO | NWPO | WPO | NWPO

Precision
W-T1 | 0.97 | 0.96 0.93 | 0.93 0.96 | 0.96
W-T2 | 0.98 | 0.97 0.94 | 0.93 0.97 | 0.96
P-T1 1097 | 0.97 0.94 | 0.94 0.97 | 0.95
P-T2 1098 | 0.97 0.95 | 0.95 0.97 | 0.96
Recall
W-T1 | 0.77 | 0.78 0.74 | 0.75 0.76 | 0.76
W-T2 | 0.77 | 0.77 0.74 | 0.74 0.75 | 0.75
P-T1 ] 0.77 | 0.79 0.75 | 0.75 0.76 | 0.76

P-T2 | 0.76 | 0.78 0.73 | 0.74 0.75 | 0.76
Table 1. Precision and recall values.

Perplexity Increase Perplexity Reduction

vs. grammars (%) vs. bigrams (%)

WPO NWPO WPO NWPO
W-T1 7.34 8.57 17.11 15.85
W-T2 7.22 8.25 17.19 15.96
P-T1 6.89 8.18 17.36 16.13
P-T2 6.81 7.92 17.54 16.25

Table 2. The perplexity (%) in hybrid networks compared to
grammar-based ones and bigrams (Test 1).

Table 2 depicts the average increase in perplexity of our hybrid
networks compared to the grammar-based ones and the average
reduction compared to bigrams. Perplexity in the grammar-
based and in our hybrid networks is estimated by following
paths backwards and multiplying the inverse branching factor at
each step. Perplexity in grammar-based networks is smaller than
in hybrid ones. However, a very small perplexity indicates that
the language model is not robust against utterances not included
in the training data. According to the experiments, T2 networks
have lower perplexity than T1 ones. Networks of WPO case
have lower perplexity values than the ones of NWPO case and
phrase-based networks have generally lower perplexity than
word-based ones.

In the second set of experiments (Test 2), we considered as
training sentences data derived from the use of the system itself,
to compare our models with bigrams. The reason is that the
power of bigrams arises from the fact that they give reliable
estimations when trained with real data. Thus it would not be
appropriate to compare our models with bigrams using
sentences derived only from grammars. Data is split into two
parts (80% for training, 20% for testing) so that perplexity is
computed by using a test set different from the training set.
Since the test data may contain events not seen in the training
sentences, smoothing techniques should be applied. We used the
Witten-Bell discounting scheme. If we have a node 4 connected
to a node B, then # is the number of occurrences of links “4 *”



and ¢ is the number of the distinct links “4 *” that exist. We
consider only the occurrences of the specific node and not of the
word or phrase associated with it, because the word/phrase may
appear in more than one nodes. For events that have been seen
P(w | h)=c/(n+t) (where w is a word, 4 is the history and c is
the number of occurrences of w in the context /). For unseen
events P(w | h) = ¢t / (n + t). Table 3 shows the average
perplexity reduction in our hybrid networks compared to
bigrams. The perplexity reduction vs. bigrams is a little higher
in Test 1 compared to Test 2. A reasonable explanation would
be that the performance of bigrams is better in Test 2 since the
training sentences are real data derived from the use of the
system itself and not by a grammar. The average precision and
recall values for the clusters formed are shown in Table 1. There
is a reduction compared to the values of Test 1 caused by the
spontaneous nature of the training data in Test 2, which
complicates clustering.

Test 2 Test 3
WPO NWPO WPO NWPO
W-T1 15.28 13.39 15.71 14.20
W-T2 15.42 13.63 15.85 14.44
P-T1 15.55 14.18 16.02 14.57
P-T2 15.69 14.22 16.15 14.91

Table 3. The average perplexity reduction (%) in hybrid
networks compared to bigrams (Tests 2 and 3).

In the third experiment (Test 3) we considered as training
sentences data derived from grammars mixed with sentences
derived from the use of the system. Table 3 shows the
perplexity reduction. Again smoothing was applied. Table 1
depicts the average precision and recall values for the clusters
formed. There is a reduction compared to the values of Test 1
but an increase compared to Test 2 since sentences derived from
grammars are included in the training data.

Test 1 Test 2 Test 3
W-G 78.0
P-G 78.2

WPO | NWPO WPO NWPO | WPO | NWPO
w-T1 | 80.8 | 81.4 81.0 812 | 81.6 | 82.0
w-T2 | 82.0 | 822 81.6 82.0 | 824 | 83.0
P-T1 | 82.4 | 83.0 824 82.6 | 832 | 838
P12 | 82.8 | 83.2 82.6 828 | 84.0 | 844
W 2g 77.6 78.4 78.8
P2g 78.0 78.6 79.0

Table 4. Keyword recognition accuracy (%).

In order to investigate how the networks produced by our
algorithm affect recognition performance, tests were carried out
with data from the call-routing dialogue system. We used 500
recordings spoken by real users, corresponding to the system
prompt “Who would you like to speak with?”. In Table 4 we can
see the keyword accuracy for grammar-based (G) networks,
hybrid ones and bigrams (2g). The keyword accuracy is the
percentage of the sentences where the keyword (name) was
recognized correctly. The hybrid networks give the best
recognition rates due to the fact that they retain the
predictability of the grammar-based networks and at the same
time they are more robust for spontaneous speech. The columns
correspond to the methods of building the models and the
training data. This of course does not apply to grammar-based
networks and that is why they have the same accuracy in all
tests. If the best percentages of grammar-based networks, hybrid
ones and bigrams are considered, the gain in recognition
performance is 6.2% compared to grammar-based networks and
5.4% compared to bigrams.

3. DIALOGUE STRATEGY

Sub-task Strategy Analysis

For the following paragraphs it is implied that the recognizer’s
behavior is modeled by a random variable R, describing the
recognition rate r, defined in the interval [0,1]. The probability
density function (from now on pdf) for this random variable is
Jf+(r) with cumulative distribution function F,(r) (from now on
cdf). The average recognition rate of the recognizer is u, with
standard deviation g,. In addition the random variable Q,
describing the error rate is defined as O=1-R. The cdf of O is

F(q)=P(0Sq)=P(1-R<q)= A(R=1-q)=1- F,(1-g)=1-F;(r)

It is proved that the pdf of the error rate Q is the same with the
pdf of the success rate R since

L= E@=21-E0-92 Eu-g=— % Ea-g=10-9=£0)

D= F= D= =gl=— El=g=2  El=a=/4=9=/,

It also can be proved that the sum of the average recognition
and error rates is one, and that the variance of the error rate is
the same as the variance of the recognition rate. For the analysis
of the strategies, the definition of the following events is
necessary:

E ={success}  E = {failure)

E, = {success during the i" turn}, ieS={1,2,..}
EUE =g the space of the expirement
ENE=¢ thenullsetand

E,NE =¢. i#j ENE=¢ (L]JE,.)zE

where S is the space of the variable / which represents the
allowed number of turns and depends every time  the
experiment. In addition, it is assumed that when there are
confirmations, the items are recognized correctly.

Strategy 1 (immediate Advance): In this case S={1}.
The probability of success and failure, given the recognition rate
is PE/R=r)=r and P(E/R=r)=1-r
Using the total probability theorem, the probabilities of the
events “success” and “failure” are  p(g)=y, and pEy=1-

Strategy 2 (sub-task repetition until success): The
probability of success on the first turn is r, on the second (/-r)r
on the third (I-r)’ and so on. So the random variable N
representing the number of turns necessary to observe the event
E, given the recognition rate 7, follows a geometric distribution.
The space S for this strategy is S={1,2,3,...}.

The probability for the event E; , given the recognition rate R is
PE/R=ry=r(1-r)"

Using the previous equation, the fact that P(E/E,)=1 and the law

of total probability, it is proved that

P(E/R)=1, P(E/R)=0 r=0

P(E)=1, P(E)=0
that is, eventually there will be a success, independently from
the recognition rate r, for » different from zero.
Let N be a random variable representing the turn number at
which the event £ is observed. Then
fo,(nlr)=PE/R=r)=P(N=n/R=r)=r(1-ry"" (5)
Since (5) is geometrically distributed, the expected number of
turns and the variance for the sub-task given the recognition rate
18 1 1-r
T and o}, =—

Using the t0€a1 probability theorem it is proved that

1
sy = jl frdr and
0 r

o = =L rovdr| Lo
r ar

0

Strategy 3 (sub-task repetition for a maximum of m
times): Following the same reasoning as in strategy 2, and



taking into account that for this strategy S={1.2,...,m}, it is
proved that

P(E/R)=1=(1=r)", P(E/R)=(1-r)"
P(EY=1-m". P(E)=m"

where the last quantity is the m” moment of the error rate Q.

(©6)

If there is a constrain for the sub-task, that the probability of
success is greater than a value Py, then solving (6) for m gives
the minimum value of m for which the condition is satisfied:

_ log(1-B)
~ log(1—7r)

Let N be a random variable describing the number of turns
necessary for success or failure. Then the probability mass
function (pmf), given the recognition rate », would be

S alr) = |:

., O<r<l, 0<P <1

-7, 1<n<m
(1 )m 1 n=m

So the expected number of turns and the variance, given the
recognition rate r and the threshold m, after some calculations

become
1-(1-#)" P(E/R)

Uy pg=—"—"—"=—— 0<r<l, m=12,.--
r r
) I—r+(-2mr(l—ry" —(1-r)™"
ON/R = 2

re
If the recognition rate is not given, but instead its distribution is
known the following formulas can be proved
j (1 "
0
5 2—r+r(1-r)" =2rm(1-r)" - 2(1
o2 = J (-r) (1-r)" -2

Hy =

2 ! = f ()

r

(J U2 )dr]

0

0

Strategy 4: (confidence level examination): The space S

for this strategy is S={1,2,3,...}. Suppose that the recognizer’s
score is represented by a random variable X, with pdf fi(x)
normalized in [0,1], where f.(x)=0.xg[0]1] -
In addition, suppose that the random variable representing the
recognition rate R is a function of X, i.e. R=g(x) [6]. Then the
error rate is given by Q(x)=1-g(x), also a random variable and
function of X.

The decision regarding success and failure is given by the
following rule {if x is greater than or equal to ¢, the recognition
result is accepted, otherwise the result is discarded and the sub-
task is repeated}. The threshold 7 is set by the system designer
in advance.

The following events can be defined (given the threshold ):
CA~{Correct  Acceptance}, FA~{False  Acceptance},
CR~={Correct Rejection}, FR={False Rejection}. Then the
following probabilities are defined as a function of ¢

R=g(x), x>t

P(CAI/X:x):{ .
X x<

P(FA, | X =x) = { =18l xjot
0, X
- 7
P(CR,/X:x):{Q 1-&t0. x;[ @
X x
P(FR, | X = {(}; £(0). ii;

To find the probabilities of the events C4,, FA,, CR,, FR, when
the confidence level distribution is known, the law of total
probability is applied on (7) giving

P(C4) = [g(x)f.(x)dx = Elg(x)/ X 1]
P(FA) = [(1- g(x) fulx)dx = 1= F,(1) = P(CA)
P(FR)) = [g(x)f(x)dx = E[g(x)/ X <1]

P(CR) = [(1-g(x)f,(x)dx = F.(t)= P(FR)

If the following events are defined (given the treshold #):
S,:{Successé, F,*‘F allure} and R~={Repeat Sub-task}, then it is
clear that A F =F IandR =FR, UCR,

so the pl"ObablllElCS of the previously defined events are

R=P,=P(S)= [gx)f.(x)dx

P=P,,=P(E)=1-E0)~]S)
P.=P,=P(R)=P(FRUCR)=P(FR)+ PCR)=F(0)

Then the probabilities of success and fallurendurmg the #” turn

are given by P(E,)= PP, and P(E,) =P

The probability of successfully finishing the sub-task is
AB=2RE)=R-2 1" IR

Lets define the random variable N répresenting the number of

turns necessary for a failure or success. Then the probability

mass function of N is

[(n=PN=n)=P(E,UE,)=P" (P +P)=E0)"(1-F))

which is clearly a geometric d1str1but1on So the expected

number of turns until success or failure becomes

Zkf (k)=
with Varlance
0
Y A-Fwy
For all the relations above it is assumed that ¢ is different from
one.

1= F,(1) ©)

Experimental Results

All the experiments described below were conducted on a call-
router that was developed by Knowledge S.A.. Patras, Greece.
This system was installed at the headquarters of LogicDIS
Group in Athens on July 2000. With a lexicon of more than 600
words, the system serves more than 300 employees and
recognizes more than 100 departments and titles. It can resolve
potential conflicts and ambiguities (for example staff that
belongs to a department different from the requested one or
employees with the same surname etc). The system is operating
8 hours per day, servicing a total of 200-250 calls daily.
Although around 3,500 recordings were collected, not all of
them were used for the evaluation for two reasons: Firstly, a
percentage of them (around 10%) contained irrelevant user
responses, mainly from users not familiar with the system.
Secondly, since confirmations were used in some strategies,
there was a selection of dialogues with 100% success rate in
confirmations (although the actual success rate was around
98%) because it was necessary to eliminate the confirmation
bias from the results. In all the experiments that are described
below, the bootstrap method with 1000 samples was used to
produce the recognizer’s distribution.

Sub-task repetition for a maximum of m times: To test
the first strategy, 1599 dialogues were used. The maximum
number of turns after which the incoming call was forwarded to
a human operator in order to be served was set to two. From the
1599 dialogues there were 124 with a second attempt for
recognition. During this second turn, 116 dialogues were
terminated successfully and 8 of them were routed to the
operator. The average recognition rate was 92.33% with
standard deviation 0.62%. Formulas with conditional



probabilities were used again to calculate the theoretical results.
Theoretically, the probability of success was 1-(1-
0.9233)>=0.9941 and the expected number of turns
0.9941/0.9233=1.077. Experimentally the success rate was
(1599-8)/1599=0.9950 and the average number of turns
(1599-124)-1+124-2 10775

1599
Table 5 summarizes the results.

Theoretical ~ Experimental
P(E) 99.41 % 99.50 %

Strategy 1 w1077 1.077
P(E) 9521%  95.48%
Strategy 2 w12 1.175

Table 5. Theoretical and experimental results concerning the
Call-Router Application.

Confidence level examination: To assess this strategy,
354 dialogues were tested. The recognizer produced a
confidence level from 0 to 1000, which was normalized in range
[0,1]. The decision threshold for the recognizer was set to 0.5.
From the 354 dialogues, 338 terminated successfully, and the
rest 16 with errors. In addition, during the 354 dialogues there
were 62 requests for repetition of the sub-task, giving a total of
416 turns to be analyzed. The interval [0,1] was divided in 11
class intervals. 1000 bootstrap samples of vector pairs (Cnf, R) -
Cnf stands for the confidence score - were created, each vector
having 416 pairs of elements (Crnf, R) selected randomly with
replacement from the original observations. For each class
interval, the frequency of occurrence was counted, and averaged
over the 1000 bootstrap samples. In addition for each class
interval the recognition rate was calculated using the formula
R=C/(C+F), where C stands for correct recognition and F' for
failure. This value was also averaged over the 1000 bootstrap
samples. The results are displayed in table 6.

. Class . .
Bin Interval Fi pmfi cdfi Ri
0-0.099 5,00 01,17 01,17 59.33

0.1-0.199 14,95 03,49 04,66 39,28
0.2-0.299 12,01 02,81 07,47 41,95
0.3-0.399 16,14 03,77 11,24 56,45
0.4-0.499 23,05 05,39 16,63 56,16
0.5-0.599 29,96 07,00 23,63 83,30
0.6-0.699 35,08 08,20 31,83 88,73
0.7-0.799 40,00 09.35 41,18 89.72
0.8-0.899 54,90 12,83 54,01 98.10
10 0.9-0.999 45,96 10,72 64,73 95,63
11 1 150,96 35,27 100 99,35
Table 6. Experimental distribution of the confidence score.
Since experimental data were used, the formulas (8), (9) were

modified to 1

| SR -pmf,  (10)

=—— Pp(E)=Ssmenab0s
Hy 1=cdf 400 () 1=cdf 400

Substituting the values from Table 6 to equations (10) gives the
theoretical results. Experimentally, the success rate is calculated
to be 338/354=0.9548 and the average number of turns is
416/354=1.175. Table 5 summarizes the results.

4. CONCLUSIONS AND FUTURE WORK

In this paper we presented an algorithm for creating SFSNs for
language modeling of dialogue states. Moreover, we described a
method that enables the designer of the dialogue strategy to
investigate system performance by employing diagnostic
evaluation during the initial phases of a system’s development.
The recognition success rate taken from the previous language
model evaluation combined with the proposed dialogue
mathematical modeling, can be used to predict an IDS’s
behaviour by relating dialogue parameters with the final
system’s performance. Thus the effort during global system
assessment is reduced.
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Regarding the algorithm for the development of the language
model, the tests carried out, proved the efficiency of our
algorithm concerning precision and recall values for the clusters
formed. In addition, they showed a considerable reduction in
perplexity compared to bigrams, which if it is combined with
the gain in recognition performance against both grammar-
based networks and bigrams, makes our method appropriate for
building efficient language models for IDSs. Future work will
focus on modifying our algorithm so that it deals with higher
order n-grams, which will result in lower perplexity values.

From the experimental results in the dialogue control strategies
it is obvious that the theoretical models developed are very
sound. The two most important dialogue variables, namely the
task completion rate and the number of turns can be easily and
accurately derived before installing the actual system. Some
possible and interesting uses of the models are: A-priory
analysis regarding a system’s performance and behavior,
identification of a system’s problematic areas (where deviations
from theoretical with experimental results are quite large) and
system modeling for simulation runs.

Further work is necessary in order to enhance the efficiency of
the models. Firstly, although user behavior can be concisely
modeled in the random variable R, it is sometimes necessary to
capture more details regarding system performance related to
human behavior. From the conducted experiments it was
obvious that in many cases the user’s initial response was
inappropriate, which is attributed to two major factors: The first
one is that the user was unfamiliar with the system and his/her
response was inappropriate or s’he thought s/he was discussing
with a human operator and did not pay attention to the system’s
prompts. This problem can be partially solved with better
system prompts. The other problem is related to the timing of
the response. Too late or early response resulted in incorrect
recognition. Barge—in capability or system audio signals can
partially solve this problem. Secondly, it was observed that two
types of errors were common which were related to the
confirmations and speech synthesis capabilities of the system.
The first type had the following characteristics: The recognition
was correct, but when the user was asked to confirm it, s’/he did
not understand the synthesizer’s output and a negative response
was given. Consequently the turn was incorrectly repeated. The
inverse procedure creates the second and more serious type of
error i.e. the recognition is incorrect, but the user thinks that the
system has made a correct recognition and gives a positive
answer. This action does not terminate the dialogue, but the
system fails to deliver correct information to the user. Both the
above problems were created when an inferior synthesizer was
employed in order to investigate the consequences of its
operation.
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