
EVALUATING EFFECTIVENESS AND PORTABILITY OF REINFORCEMEN T LEARNED
DIALOGUE STRATEGIES WITH REAL USERS: THE TALK TOWNINFO EVAL UATION

Oliver Lemon, Kallirroi Georgila, James Henderson∗

School of Informatics
Edinburgh University

olemon,kgeorgil,jhender6@inf.ed.ac.uk

ABSTRACT

We report evaluation results for real users of a learnt dialogue man-
agement policy versus a hand-coded policy in the TALK project’s
“TownInfo” tourist information system [1]. The learnt policy, for
filling and confirming information slots, was derived from COMMU-
NICATOR (flight-booking) data using Reinforcement Learning (RL)
as described in [2], ported to the tourist information domain (using
a general method that we propose here), and tested using 18 hu-
man users in 180 dialogues, who also used a state-of-the-arthand-
coded dialogue policy embedded in an otherwise identical system.
We found that users of the (ported) learned policy had an average
gain in perceived task completion of 14.2% (from 67.6% to 81.8%
atp < .03), that the hand-coded policy dialogues had on average 3.3
more system turns (p < .01), and that the user satisfaction results
were comparable, even though the policy was learned for a differ-
ent domain. Combining these in a dialogue reward score, we found
a 14.4% increase for the learnt policy (a 23.8% relative increase,
p < .03). These results are important because they show a) that
results for real users are consistent with results for automatic eval-
uation [2] of learned policies using simulated users [3, 4],b) that a
policy learned using linear function approximation over a very large
policy space [2] is effective for real users, and c) that policies learned
using data for one domain can be used successfully in other domains.
We also present a qualitative discussion of the learnt policy.

Index Terms— Natural language interfaces, Speech communi-
cation, Speech processing, User Interfaces, Learning Systems

1. INTRODUCTION

We describe and evaluate “TownInfo” [1], a multimodal dialogue
system using reinforcement learning (RL) for tourist information
scenarios. This is the first “Information State Update” (ISU) dia-
logue system to employ a learned dialogue policy, mapping complex
dialogue contexts, or Information States (IS), to dialogueactions.
Figure 1 shows the system’s GUI, using a map and database entities
developed by [5], which is used for system output only, marking the
locations of various entities (hotels, restaurants, bars)on the map.

In prior work on RL for dialogue systems (e.g. [6, 7, 8, 9]),
only very simple state/context representations have been used, of-
ten consisting of only the status of information “slots” (e.g. desti-
nationcity is filled with low confidence), and only specific choice
points were available for learning (e.g. initiative and confirmation in
[7]), whereas the policy we test [2] was learnt using linear function
approximation methods over a very large state space (including e.g.
speech act history) and the full range of potential dialogueactions in

∗We thank the EC IST TALK Project (no. IST 507802) for funding.

every state. The issues arise of how effective policies learned with
this method are for real users rather than in evaluation withsimulated
users [2, 3], and whether evaluation results from simulatedusers are
consistent with those for real users.

Fig. 1. The TownInfo system GUI.

We also address in this work the question of to what extent di-
alogue policies learnt from data gathered for one system, orfamily
of systems, can be re-used or adapted for use in another system. We
propose a general method for porting policies between domains in
section 4. Our hypothesis is that the slot-filling policies learnt from
our experiments with COMMUNICATOR will also be good policies
for other slot-filling tasks – that is, that we have learnt “generic”
slot-filling or information seeking dialogue policies.

The evaluation presented here was thus designed to answer the
following questions:

• How good is the learnt strategy compared to a baseline hand-
coded system strategy, for real users?

• Are results for automatic evaluation using simulated users
consistent with evaluation results with real users?

• Can dialogue strategies learned in one domain be successful
when they are ported to other domains?

Section 2 discusses related work, section 3 describes the system
functionality, and in section 4 we describe how the dialoguepoli-
cies learnt for slot filling on the COMMUNICATOR data set can be
ported to the TownInfo scenarios. Section 5 presents the evaluation
methodology and section 6 describes our results, includinga quali-
tative discussion of the learnt policy (section 6.3).



2. RELATED WORK

We only know of one evaluation of a learned dialogue policy with
real users, the NJFUN system [7], and we are not aware of any prior
work on portability of learned dialogue policies.

In [7] 21 subjects performed 6 tasks with the NJFUN system.
However, note that the baseline strategy for comparison wasnot a
fully hand-coded policy (as we use here), but one where random
choices of action were made at certain points (the “Exploratory for
Initiative and Confirmation” strategy). In these conditions task com-
pletion for the learnt policy rose from 52% to 64%, withp < .06.

Data was then divided into the first 2 tasks (“novice users”) and
tasks 3-6 (“expert users”) to control for learning effects.The learned
strategy led to significant improvement in task completion for ex-
perts but a non-significant degradation for novices.

2.1. Automatic evaluation using simulated users

In [2] we automatically evaluated learnt dialogue management poli-
cies by running them against user simulations [3]. Both the poli-
cies and the user simulations were trained using the annotated COM-
MUNICATOR data described in [10] and developed on the basis of
[11]. We compared our results against the performance of theorig-
inal COMMUNICATOR systems, using an evaluation metric derived
from the PARADISE methodology [12]. The results presented in
[2] showed that the learnt policies performed better than any of the
COMMUNICATOR systems, and 37% better than the best system,
when tested in simulation. The important next step is to discover
whether this result carries over into tests with real human users,
which we present below.

3. TOWNINFO SYSTEM OVERVIEW

Two versions of the TownInfo dialogue system (hand-coded vs. learnt
policy) are built around the DIPPER dialogue manager [13]. This
system is used to conduct information-seeking dialogues with a user
(e.g. find a particular hotel, bar, or restaurant). This allows us to
compare hand-coded against learnt strategies within the same sys-
tem (i.e. the other components such as the speech-synthesizer, rec-
ognizer, GUI, etc. all remain fixed).

3.1. Overview of system features

The following features are implemented:

• Interfaced to learnt or hand-coded dialogue policies

• Multiple tasks: information for hotels, bars, and restaurants

• Mixed-initiative, question accommodation/overanswering

• Open speech recognition using n-grams (HTK) [14]

• Use of dialogue plans (hand-coded version only)

• Open-initiative initial question (“How can I help you?”)

• User goal/task recognition (i.e. hotels/bars/restaurants)

• Confirmations: explicit and implicit based on ASR confi-
dence (hand-coded version only)

• Template-based NLG for presentation of database results

• Multimodal output: highlighting and naming on GUI

• Start over, quit, and help commands

• Simple user commands (e.g. “Show me the hotels”)

• Logging inTALK ISU format [10]

4. PORTABILITY: MOVING BETWEEN
COMMUNICATOR AND TOWNINFO DOMAINS

The learnt policies in [2] are derived from the COMMUNICATOR sys-
tems corpora [11, 10], which are in the domain of flight-booking di-
alogues. In [2] we reported learning a promising initial policy for
COMMUNICATOR dialogues, that was evaluated only in simulation
(see section 2.1), but the issue arises of how we could transfer this
policy to new domains – for example the tourist information domain
of TownInfo, and test its effectiveness for real users.

There are 2 main problems to be dealt with here:

• mapping between TownInfo system dialogue contexts/ infor-
mation states and COMMUNICATOR information states (IS)

• mapping between the learnt COMMUNICATOR system actions
and TownInfo system actions.

The learnt COMMUNICATOR policy tells us, based on a cur-
rent context (or IS), what the optimal system action is (for example
“requestinfo(destcity)” or “explicit confirm (departdate)”). Obvi-
ously, in the TownInfo scenario we have no use for task types such
as “destination city” and “departure date”. Our method therefore
is to abstract away from the particular details of the task type, but to
maintain the information about dialogue moves and theslot numbers
that are under discussion. That is, we construe the learnt COMMU-
NICATOR policy as a policy concerning how to fill up to 4 infor-
mation slots, and then access a database and present resultsto the
user. We also note that some slots are more important than others.
For example, in COMMUNICATOR it is essential to have a destina-
tion city, otherwise no results can be found for the user. Likewise,
for the TownInfo tasks, we considered the food-type, bar-type, and
hotel-location to be more important to fill than the other slots. This
suggests future work on investigating learned policies forpartial or-
derings on slots via their importance for an application.

We defined the mappings shown in table 1 between COMMU-
NICATOR dialogue actions and TownInfo dialogue actions, for each
subtask type of the TownInfo system. For example, if we are in
the restaurant subtask, when the learnt policy outputs the COMMU-
NICATOR action “requestinfo(destcity)”, that dialogue move gets
mapped to the TownInfo action “requestinfo(food type)”.

COMMUNICATOR action TownInfo action

dest-city food-type
depart-date food-price
depart-time food-location
dest-city hotel-location
depart-date room-type
depart-time hotel-price
dest-city bar-type
depart-date bar-price
depart-time bar-location

Table 1. Porting between domains: subtask mappings for system
actions and Information States.

Note that we treat each of the 3 TownInfo subtasks (hotels, restau-
rants, bars) as a separate slot-filling dialogue thread, governed by
COMMUNICATOR actions. This means that the very top level of the
dialogue (“How may I help you?”) is not governed by the learntpol-
icy. Only when we are in a recognized subtask do we ask the COM-
MUNICATOR policy for the next action. Since the COMMUNICATOR

policy was learnt for 4 slots, we simply “pre-fill” a slot (origin city,



since this was usually already known at the start of COMMUNICA -
TOR dialogues) in the IS when we send it to the learned policy in
order to retrieve an action.

As for the context/information state mappings, these follow the
same principles. That is, we abstract over the TownInfo states to
form states that are meaningful for COMMUNICATOR policies, us-
ing the same mapping (table 1). This means that, for example,a
TownInfo state wherefood-type and food-price are filled
with high confidence is mapped to a COMMUNICATOR state where
dest-city anddepart-date are filled with high confidence,
and all other state information is identical (modulo the task names).

5. EVALUATION METHODOLOGY

We implemented both the learned policy and a hand-coded policy in
the TownInfo dialogue system of [1]. The hand-coded policy was
constructed using our experience in dialogue system design. It has
fixed confidence score thresholds for determining types of confirma-
tion, and allows mixed initiative, and thus is a reasonable “state-of-
the-art” dialogue policy. This hand-coded policy system has a 67.6%
perceived task completion score (see section 6), which is compara-
ble to the 52% task completion score for the NJFUN baseline policy
[7]. Both policies had the same (fixed) information presentation rou-
tines, and the grammar, recognizer, GUI, synthesizer, and database
were equivalent across the two conditions. We evaluated thesystem
with 18 real users, via Perceived Task Completion, DialogueLength,
and subjective evaluations for each dialogue in the two conditions.

Following the methodology of [12] we present each subject with
10 tasks (5 in each condition), controlled for learning and temporal
ordering effects (i.e. for half the subjects, the learned policy was
encountered first, and for the other half the hand-coded policy was
encountered first).

The tasks were presented to the subjects in the following way, to
prevent subjects “reading” the tasks to the system:

Task 1: You are on a business trip on your own.
You need to find a hotel room in the middle
of town. Price is no problem.

The users’ perceived task completion (PTC) was collected like so:

Write the name of result that the system
presented to you (e.g. FOG BAR) here:_________

Does this item match your search? Yes/No

For User Preference scores, the users were then asked, for each
dialogue, to evaluate the following on a 5-point Likert scale:

• “In this conversation, it was easy to get the information that I
wanted.”

• “The system worked the way I expected it to, in this conver-
sation.”

• “Based on my experience in this conversation, I would like to
use this system regularly.”

We also collected dialogue length, since longer dialogues are
known to be less satisfactory for users [12] and dialogue length is
a component of the reward signals used in RL for dialogue man-
agement [2, 9, 6, 7] (usually a small negative score for each system
turn).

The full corpus currently consists of 180 dialogues with 18 users,
and we are collecting more data with the system. The corpus isalso

currently being transcribed and n-best recognition hypotheses are be-
ing generated for user utterances, using ATK [14]. The final corpus
will be freely released to the research community.

6. RESULTS

6.1. Perceived Task Completion (PTC) and User Preference

As shown in table 2 the results of the evaluation were a 14.2% gain
(from 67.6% to 81.8%) in average perceived task completion for the
learnt policy (significant atp < 0.03), which is a 21% relative in-
crease in PTC. User preference is not significantly different between
the two systems.

This compares favourably with the results for NJFUN [7] where
task completion rose from 52% to 64%, withp < .06. Thus, our
results are consistent with those of [7] and support the claim that
learned policies can outperform hand-coded ones.

Policy PTC User pref. System turns Reward
(Av. %) (Av.) (Av.) (Av.)

hand-coded 67.6 2.75 14.9 60.5
learnt 81.8 2.67 11.6 74.9

Table 2. Evaluation of the policies (18 users, 180 dialogues).

6.2. Dialogue Length and Reward

For the 180 test dialogues we found that the average number ofsys-
tem turns in learnt policy dialogues is 11.6 whereas for the hand-
coded policy dialogues the average number of system turns is14.9
(a significant difference atp < 0.01).

This means that hand-coded strategy dialogues had on average
28.4% more system turns (3.3 per dialogue) than dialogues with the
learnt policy. Combined with the task completion results above, we
can see that users of the learnt policy had more effective overall in-
teractions with the system (on average shorter dialogues with greater
task completion). When we compute dialogue reward by givinga
100 score for perceived task completion and -1 per system turn (as
is common in RL approaches [2, 9, 6, 7]), the average reward ofthe
learned policy dialogues is 74.9, versus 60.5 for the hand-coded pol-
icy (14.4% reward gain for the learnt strategy, significant at p < .03,
a 23.8% relative reward increase). This is consistent with the simu-
lated evaluation results of [2] which showed 37% more reward(than
the best COMMUNICATOR system) for the learnt policy.

Overall, this evaluation shows that a policy learned using large
feature spaces and action sets, using linear function approximation
[2] can outperform a hand-coded policy, and it shows also that eval-
uations with our simulated users [2, 3, 4] are consistent with results
for real users, and that a dialogue policy learned for one domain can
be ported to similar domains successfully.

6.3. Qualitative description of the learnt policy

The question naturally arises of why or in what respects the learnt
policy is “better” than the hand-coded one. Qualitative analysis of
the results led to the following observations:

1) The learnt policy did not confirm as often as the hand-crafted
policy, which was designed to implicitly confirm utteranceswith
confidence scores over a fixed threshold and explicitly confirm ut-
terances with scores under that threshold. This threshold was tuned



by hand in the baseline policy. Note however that the learnt policy
was not optimized at all for this threshold, since the COMMUNICA -
TOR data does not contain ASR confidence scores for training.

2) The learnt policy could choose to skip slots whereas the hand-
crafted policy would insist on always filling a slot before moving to
the next unfilled one (i.e. although the hand-coded policy does allow
the user to skip ahead and overanswer, it always returns to unfilled
slots). That feature of the hand-crafted policy caused problems for
users which the system had trouble recognizing. This findingis sim-
ilar to the result of [15] where a learnt policy shows (in simulation) a
successful “focus switching” strategy which asks for a different slot
if it is encountering problems with the current slot.

3) Our database consisted of 6 hotels, 6 bars, and 6 restaurants.
Therefore if the system skipped a slot, the worst thing that could
happen would be to present all hotels (or bars, or restaurants) to the
user. This would be more of a problem with a much larger database.
Thus, in some cases even though the learned policy did not fillall
slots, users got the information they wanted since the superset of the
query results, caused by unfilled slots, was still small enough to be
presented. Part of our future work will thus be to investigate the
effect of the database size on perceived task completion andgeneral
user satisfaction with such a strategy.

Clearly, these sorts of considerations could be implemented in
a better hand-coded baseline system for comparison. However, it is
policy learning itself that has revealed these strategies.In addition,
we can expect that learned policies will only become better when we
train them on more data and allow them to optimize on more features
e.g. ASR confidence thresholds for implicit/explicit confirmation.

7. CONCLUSION AND FUTURE WORK

We reported evaluation results with 18 real users (180 dialogues)
for a learned dialogue policy versus a hand-coded dialogue policy
in the TALK project’s “TownInfo” tourist information system [1].
The learned policy, for filling and confirming information slots, was
derived from COMMUNICATOR (flight-booking) data as described
in [2], ported to the tourist information domain, and testedusing hu-
man users, who also used a state-of-the-art hand-coded dialogue pol-
icy embedded in an otherwise identical system. We also presented
a generic method for porting learned policies between domains in
similar (“slot-filling”) applications.

We found that users of the (ported) learned policy had an average
gain in perceived task completion of 14.2% (p < .03) and compa-
rable user satisfaction results, even though the policy waslearned
for a different domain. For dialogue length we found that hand-
coded strategy dialogues have on average 3.3 more system turns (at
p < .01) than dialogues with the learnt policy. Combining these in
a dialogue reward score, we found a 14.4% increase for the learnt
policy (a 23.8% relative increase,p < .03). These results are impor-
tant because they show that a) a policy learned using linear function
approximation over a very large policy space [2] is effective for real
users, b) the automatic evaluation of the learned policy [2]using
simulated users [3, 4] is consistent with results for real users, and
c) policies learned using dialogue data for one domain can beused
successfully in other similar domains or applications.

Future work, as well as conducting a larger evaluation and using
other domains/tasks, will explore the notion of similaritybetween
domains/tasks, and under exactly what conditions learned policies
are reliably portable (e.g. comparing number, type, and ordering con-
straints on slots, size of database etc.). We will also develop auto-
matic evaluation metrics for dialogue policies in simulations which
are strongly correlated with results from real evaluations.

8. REFERENCES

[1] Oliver Lemon, Kallirroi Georgila, James Henderson, and
Matthew Stuttle, “An ISU dialogue system exhibiting rein-
forcement learning of dialogue policies: generic slot-filling in
the TALK in-car system,” inProceedings of EACL, 2006.

[2] James Henderson, Oliver Lemon, and Kallirroi Georgila,“Hy-
brid Reinforcement/Supervised Learning for Dialogue Policies
from COMMUNICATOR data,” inIJCAI workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems, 2005.

[3] Kallirroi Georgila, James Henderson, and Oliver Lemon,
“Learning User Simulations for Information State Update Di-
alogue Systems,” inInterspeech/Eurospeech: the 9th biennial
conference of the International Speech Communication Asso-
ciation, 2005.

[4] Kallirroi Georgila, James Henderson, and Oliver Lemon,
“User simulation for spoken dialogue systems: Learning and
evaluation,” inInterspeech/ICSLP, 2006, p. (to appear).

[5] Matthew Stuttle, Jason Williams, and Steve Young, “A frame-
work for dialog systems data collection using a simulated ASR
channel,” inICSLP 2004, Jeju, Korea, 2004.

[6] E. Levin and R. Pieraccini, “A stochastic model of computer-
human interaction for learning dialogue strategies,” inProc.
Eurospeech, 1997.

[7] Diane Litman, Micheal Kearns, Satinder Singh, and Marilyn
Walker, “Automatic optimization of dialogue management,”
in Proc. COLING, 2000.

[8] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn
Walker, “Optimizing dialogue management with reinforce-
ment learning: Experiments with the NJFun system,”Journal
of Artificial Intelligence Research (JAIR), 2002.

[9] Olivier Pietquin, A Framework for Unsupervised Learning of
Dialogue Strategies, Presses Universitaires de Louvain, SIMI-
LAR Collection, 2004.

[10] Kallirroi Georgila, Oliver Lemon, and James Henderson, “Au-
tomatic annotation of COMMUNICATOR dialogue data for
learning dialogue strategies and user simulations,” inNinth
Workshop on the Semantics and Pragmatics of Dialogue (SEM-
DIAL: DIALOR), 2005.

[11] M. Walker, A. Rudnicky, Aberdeen J., E. Bratt, GarofoloJ.,
H. Hastie, A. Le, B. Pellom, A. Potamianos, R. Passonneau,
R. Prasad, Roukos S., G. Sanders, S. Seneff, D. Stallard, and
S. Whittaker, “ DARPA Communicator Evaluation: Progress
from 2000 to 2001,” inProc. ICSLP, 2002.

[12] Marilyn Walker, Candace Kamm, and Diane Litman., “To-
wards Developing General Models of Usability with PAR-
ADISE,” Natural Language Engineering, vol. 6, no. 3, 2000.

[13] Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi Oka,
“DIPPER: Description and Formalisation of an Information-
State Update Dialogue System Architecture,” in4th SIGdial
Workshop on Discourse and Dialogue, Sapporo, 2003, pp.
115–124.

[14] Steve Young,ATK: an application toolkit for HTK, version 1.4,
2004.

[15] Matthew Frampton and Oliver Lemon, “Learning more effec-
tive dialogue strategies using limited dialogue move features,”
in ACL, 2006.


