EVALUATING EFFECTIVENESS AND PORTABILITY OF REINFORCEMEN T LEARNED

DIALOGUE STRATEGIES WITH REAL USERS: THE TALK TOWNINFO EVAL

UATION

Oliver Lemon, Kallirroi Georgila, James Henderson

School of Informatics
Edinburgh University
olemon,kgeorgil,jhender6 @inf.ed.ac.uk

ABSTRACT

We report evaluation results for real users of a learnt diaédoman-
agement policy versus a hand-coded policy in the TALK prigec
“TownlInfo” tourist information system [1]. The learnt poyi, for
filling and confirming information slots, was derived frono@mu-
NICATOR (flight-booking) data using Reinforcement Learning (RL)
as described in [2], ported to the tourist information dam@ising

a general method that we propose here), and tested using-18 h

man users in 180 dialogues, who also used a state-of-tHead-
coded dialogue policy embedded in an otherwise identicstesy.
We found that users of the (ported) learned policy had anaaeer
gain in perceived task completion of 14.2% (from 67.6% t88d.

atp < .03), that the hand-coded policy dialogues had on average 3.

more system turngp(< .01), and that the user satisfaction results
were comparable, even though the policy was learned forfardif
ent domain. Combining these in a dialogue reward score, wedo
a 14.4% increase for the learnt policy (a 23.8% relative énse,

p < .03). These results are important because they show a) thg

results for real users are consistent with results for aatareval-
uation [2] of learned policies using simulated users [3]that a
policy learned using linear function approximation overayarge
policy space [2] is effective for real users, and c) that@eb learned
using data for one domain can be used successfully in otimeaiths.
We also present a qualitative discussion of the learnt yolic

Index Terms— Natural language interfaces, Speech communi-

cation, Speech processing, User Interfaces, Learning8st

1. INTRODUCTION

We describe and evaluate “TownInfo” [1], a multimodal dle
system using reinforcement learning (RL) for tourist imf@tion
scenarios. This is the first “Information State Update” ()Slia-
logue system to employ a learned dialogue policy, mappimgptex
dialogue contexts, or Information States (IS), to dialogwé&ons.
Figure 1 shows the system’s GUI, using a map and databasiegnti
developed by [5], which is used for system output only, magkhe
locations of various entities (hotels, restaurants, bamghe map.

In prior work on RL for dialogue systems (e.g. [6, 7, 8, 9]),
only very simple state/context representations have bsed,wf-
ten consisting of only the status of information “slots"gedesti-
nationcity is filled with low confidence), and only specific choice
points were available for learning (e.g. initiative and fionation in
[7]), whereas the policy we test [2] was learnt using linaarction
approximation methods over a very large state space (imguslg.
speech act history) and the full range of potential dialoaetéons in

*We thank the EC IST TALK Project (no. IST 507802) for funding.

every state. The issues arise of how effective policieskdmith

this method are for real users rather than in evaluation swttulated
users [2, 3], and whether evaluation results from simulatsts are
consistent with those for real users.

X DisplayAgent [EiE

Fig. 1. The TownInfo system GUI.

We also address in this work the question of to what extent di-
alogue policies learnt from data gathered for one systerfaraily
of systems, can be re-used or adapted for use in anothensygte
propose a general method for porting policies between dasniai
section 4. Our hypothesis is that the slot-filling policiearht from
our experiments with GMMUNICATOR will also be good policies
for other slot-filling tasks — that is, that we have learntrigac”
slot-filling or information seeking dialogue policies.

The evaluation presented here was thus designed to anssver th
following questions:

e How good is the learnt strategy compared to a baseline hand-
coded system strategy, for real users?

e Are results for automatic evaluation using simulated users
consistent with evaluation results with real users?

e Can dialogue strategies learned in one domain be successful
when they are ported to other domains?

Section 2 discusses related work, section 3 describes #hersy
functionality, and in section 4 we describe how the dialogoé-
cies learnt for slot filling on the GMMUNICATOR data set can be
ported to the TownInfo scenarios. Section 5 presents thigiaian
methodology and section 6 describes our results, includiggali-
tative discussion of the learnt policy (section 6.3).

2. RELATED WORK 4. PORTABILITY: MOVING BETWEEN
COMMUNICATOR AND TOWNINFO DOMAINS
We only know of one evaluation of a learned dialogue policthwi
real users, the NJFUN system [7], and we are not aware of aoy pr The learnt policies in [2] are derived from thedX@MUNICATOR Sys-
work on portability of learned dialogue policies. tems corpora [11, 10], which are in the domain of flight-boakdi-

In [7] 21 subjects performed 6 tasks with the NJFUN system.alogues. In [2] we reported learning a promising initialipplfor
However, note that the baseline strategy for comparisonneas® COMMUNICATOR dialogues, that was evaluated only in simulation
fully hand-coded policy (as we use here), but one where nando (see section 2.1), but the issue arises of how we could eatisk
choices of action were made at certain points (the “Exptoyator policy to new domains — for example the tourist informati@amghin
Initiative and Confirmation” strategy). In these condidask com- of TownlInfo, and test its effectiveness for real users.
pletion for the learnt policy rose from 52% to 64%, wijth< .06. There are 2 main problems to be dealt with here:

Data was then divided into the first 2 tasks (“novice userst) a
tasks 3-6 (“expert users”) to control for learning effecthe learned
strategy led to significant improvement in task completion éx-

e mapping between TownInfo system dialogue contexts/ infor-
mation states and @UMUNICATOR information states (IS)

perts but a non-significant degradation for novices. e mapping between the learnC®MMUNICATOR system actions
and TownInfo system actions.
2.1. Automatic evaluation using simulated users The learnt @ MMUNICATOR policy tells us, based on a cur-
.) . rent context (or IS), what the optimal system action is (faraple
In [2] we automatically evaluated learnt dialogue managemeli- «eqyestinfo(destcity)” or “explicit_confirm (depardate)”). Obvi-
cies by running them against user simulations [3]. Both tal-p q)y in the TownInfo scenario we have no use for task types s
cies and the user simulations were trained using the aretbGim- as “destination city” and “departure date”. Our method ¢here

MUNICATOR data described in [10] and developed on the basis 0fg 1, apstract away from the particular details of the taglefybut to
[11]. We compared our results against the performance ob® 1aintain the information about dialogue moves andsibenumbers
inal COMMUNICATOR systems, using an evaluation metric derived inat are under discussion. That is. we construe the leapmind -
from the PARADISE methodology [12]. The results presented i \,caror policy as a policy concerning how to fill up to 4 infor-
[2] showed that the learnt policies performed better thanafithe 1 ati0n siots, and then access a database and present tesiis
COMMUNICATOR systems, and 37% better than the best systemyger e also note that some slots are more important thamsoth
when tested in simulation. The important next step is toaliéC £or example, in @MMUNICATOR it is essential to have a destina-
whether this result carries over into tests with real humaersi i city, otherwise no results can be found for the user.ehilse

which we present below. for the TownInfo tasks, we considered the food-type, baetand
hotel-location to be more important to fill than the othettsldrhis
3. TOWNINFO SYSTEM OVERVIEW suggests future work on investigating learned policiegptotial or-
derings on slots via their importance for an application.
Two versions of the TownlInfo dialogue system (hand-codetbasnt We defined the mappings shown in table 1 betweem@u-

policy) are built around the DIPPER dialogue manager [13)isT NicaToR dialogue actions and TownlInfo dialogue actions, for each
system is used to conduct information-seeking dialoguéisaviiser subtask type of the TownInfo system. For example, if we are in
(e.g. find a particular hotel, bar, or restaurant). Thisvedlais to the restaurant subtask, when the learnt policy outputs thitNDJ-
compare hand-coded against learnt strategies within the sys- NICATOR action “requesinfo(destcity)”, that dialogue move gets
tem (i.e. the other components such as the speech-syrghesiz- mapped to the TownlInfo action “requasfo(food.type)”.

ognizer, GUI, etc. all remain fixed).

COMMUNICATOR action | Towninfo action |

3.1. Overview of system features dest-city food-type
The following features are implemented: depart-dgte food-pncel
) o depart-time food-location

e Interfaced to learnt or hand-coded dialogue policies dest-city hotel-location

e Multiple tasks: information for hotels, bars, and restaisa depart-date room-type

e Mixed-initiative, question accommodation/overanswerin depart-time hotel-price

N) dest-city bar-type
e Open speech recognition using n-grams (HTK) [14] depart-date bar-price
e Use of dialogue plans (hand-coded version only) depart-time bar-location

e Open-initiative initial question (“How can | help you?”) . , .
o Table 1. Porting between domains: subtask mappings for system
e User goal/task recognition (i.e. hotels/bars/restagjant actions and Information States.
e Confirmations: explicit and implicit based on ASR confi-
dence (hand-coded version only)

o Template-based NLG for presentation of database results Note that we treat each of the 3 Towninfo subtasks (hote3gue

rants, bars) as a separate slot-filling dialogue threademed by

e Multimodal output: highlighting and naming on GUI COMMUNICATOR actions. This means that the very top level of the

e Start over, quit, and help commands dialogue (“How may | help you?”) is not governed by the leguoit

e Simple user commands (e.g. “Show me the hotels”) icy. Only when we are in a recognllzed gubtask do we ask the-C
MUNICATOR policy for the next action. Since thedMMUNICATOR

e Logging inTALK ISU format [10] policy was learnt for 4 slots, we simply “pre-fill” a slot (i city,

since this was usually already known at the start GMBUNICA-

currently being transcribed and n-best recognition hyeséls are be-

TOR dialogues) in the IS when we send it to the learned policy ining generated for user utterances, using ATK [14]. The fioabas

order to retrieve an action.

As for the context/information state mappings, these folibe
same principles. That is, we abstract over the TownInfoestad
form states that are meaningful foro®MUNICATOR policies, us-

will be freely released to the research community.

6. RESULTS

ing the same mapping (table 1). This means that, for exanple, g 1 perceived Task Completion (PTC) and User Preference

TownlInfo state wherd ood-t ype andf ood- pri ce are filled
with high confidence is mapped to @@MUNICATOR state where
dest - city anddepart - dat e are filled with high confidence,
and all other state information is identical (modulo th&ktaames).

5. EVALUATION METHODOLOGY

We implemented both the learned policy and a hand-codedypioli
the TownlInfo dialogue system of [1]. The hand-coded poli@sw
constructed using our experience in dialogue system desidras
fixed confidence score thresholds for determining types oficna-
tion, and allows mixed initiative, and thus is a reasonabtaté-of-
the-art” dialogue policy. This hand-coded policy systers &a&7.6%
perceived task completion score (see section 6), whichrigoena-
ble to the 52% task completion score for the NJFUN baselitieypo
[7]. Both policies had the same (fixed) information presgaterou-
tines, and the grammar, recognizer, GUI, synthesizer, atabdse
were equivalent across the two conditions. We evaluatedytsiem
with 18 real users, via Perceived Task Completion, Dialdgeregth,
and subjective evaluations for each dialogue in the two itimmg.

Following the methodology of [12] we present each subjeth wi
10 tasks (5 in each condition), controlled for learning agwhporal
ordering effects (i.e. for half the subjects, the learneticgovas
encountered first, and for the other half the hand-codecpolas
encountered first).

The tasks were presented to the subjects in the following teay
prevent subjects “reading” the tasks to the system:

Task 1: You are on a business trip on your own.
You need to find a hotel room in the mddle
of town. Price is no problem

The users’ perceived task completion (PTC) was collecterdo:

Wite the nane of result that the system
presented to you (e.g. FOG BAR) here:

Does this item match your search? Yes/ No

As shown in table 2 the results of the evaluation were a 14.2# g
(from 67.6% to 81.8%) in average perceived task completionife
learnt policy (significant ap < 0.03), which is a 21% relative in-
crease in PTC. User preference is not significantly diffebatween
the two systems.

This compares favourably with the results for NJFUN [7] weher
task completion rose from 52% to 64%, with< .06. Thus, our
results are consistent with those of [7] and support thertidiat
learned policies can outperform hand-coded ones.

Policy PTC User pref.| System turns|| Reward
(Av. %) | (Av.) (Av.) (Av.)

hand-coded|| 67.6 2.75 14.9 60.5

learnt 81.8 2.67 11.6 74.9

Table 2. Evaluation of the policies (18 users, 180 dialogues).

6.2. Dialogue Length and Reward

For the 180 test dialogues we found that the average numisgsef
tem turns in learnt policy dialogues is 11.6 whereas for thedh

coded policy dialogues the average number of system turh4.%
(a significant difference at < 0.01).

This means that hand-coded strategy dialogues had on averag

28.4% more system turns (3.3 per dialogue) than dialoguttstive
learnt policy. Combined with the task completion resulte\ad) we
can see that users of the learnt policy had more effectiveativa-
teractions with the system (on average shorter dialoguéssgréater
task completion). When we compute dialogue reward by gidng
100 score for perceived task completion and -1 per system(ag
is common in RL approaches [2, 9, 6, 7]), the average rewatheof
learned policy dialogues is 74.9, versus 60.5 for the hatkd pol-
icy (14.4% reward gain for the learnt strategy, significan & .03,
a 23.8% relative reward increase). This is consistent wighsimu-
lated evaluation results of [2] which showed 37% more rev{rdn

For User Preference scores, the users were then askedcfor eathe best © MMUNICATOR system) for the learnt policy.

dialogue, to evaluate the following on a 5-point Likert scal

e “In this conversation, it was easy to get the informatiort tha
wanted.”

Overall, this evaluation shows that a policy learned usarge
feature spaces and action sets, using linear function ajppation
[2] can outperform a hand-coded policy, and it shows alsbétal-
uations with our simulated users [2, 3, 4] are consistent vasults

e “The system worked the way | expected it to, in this conver-for real users, and that a dialogue policy learned for onealoman

sation.”

e “Based on my experience in this conversation, | would like to

use this system regularly.”

be ported to similar domains successfully.

6.3. Qualitative description of the learnt policy

We also collected dialogue length, since longer dialogues a The question naturally arises of why or in what respects ¢aenit

known to be less satisfactory for users [12] and dialogugtleis

policy is “better” than the hand-coded one. Qualitativelgsia of

a component of the reward signals used in RL for dialogue manthe results led to the following observations:

agement [2, 9, 6, 7] (usually a small negative score for egstem
turn).

The full corpus currently consists of 180 dialogues with &8ns,
and we are collecting more data with the system. The corpaisés

1) The learnt policy did not confirm as often as the hand-ethft
policy, which was designed to implicitly confirm utterancegh
confidence scores over a fixed threshold and explicitly confit-
terances with scores under that threshold. This threshaekltuned

by hand in the baseline policy. Note however that the leankity
was not optimized at all for this threshold, since theNB1UNICA -
TOR data does not contain ASR confidence scores for training.

2) The learnt policy could choose to skip slots whereas the-ha
crafted policy would insist on always filling a slot before virgy to
the next unfilled one (i.e. although the hand-coded poli@sddlow
the user to skip ahead and overanswer, it always returnsfiibedn
slots). That feature of the hand-crafted policy caused lprob for
users which the system had trouble recognizing. This findirsgm-
ilar to the result of [15] where a learnt policy shows (in siation) a
successful “focus switching” strategy which asks for aetiéht slot
if it is encountering problems with the current slot.

3) Our database consisted of 6 hotels, 6 bars, and 6 restauran
Therefore if the system skipped a slot, the worst thing tlatld
happen would be to present all hotels (or bars, or restasirémthe
user. This would be more of a problem with a much larger dat@ba
Thus, in some cases even though the learned policy did natlfill
slots, users got the information they wanted since the sepef the
query results, caused by unfilled slots, was still small ghoto be
presented. Part of our future work will thus be to investgttie
effect of the database size on perceived task completiogeneral
user satisfaction with such a strategy.

Clearly, these sorts of considerations could be implentkitte
a better hand-coded baseline system for comparison. Howieise
policy learning itself that has revealed these stratediesddition,
we can expect that learned policies will only become bettegmwe
train them on more data and allow them to optimize on moreifeat
e.g. ASR confidence thresholds for implicit/explicit confation.

7. CONCLUSION AND FUTURE WORK

We reported evaluation results with 18 real users (180 diads)
for a learned dialogue policy versus a hand-coded dialoglieyp
in the TALK project’s “TownlInfo” tourist information systa [1].
The learned policy, for filling and confirming informatioros$, was
derived from @®@MMUNICATOR (flight-booking) data as described
in [2], ported to the tourist information domain, and teststhg hu-
man users, who also used a state-of-the-art hand-codedjd@apol-
icy embedded in an otherwise identical system. We also ptede
a generic method for porting learned policies between dosnai
similar (“slot-filling”) applications.

We found that users of the (ported) learned policy had areaner
gain in perceived task completion of 14.2% € .03) and compa-
rable user satisfaction results, even though the policy leaed
for a different domain. For dialogue length we found thatdyan
coded strategy dialogues have on average 3.3 more systas(air
p < .01) than dialogues with the learnt policy. Combining these in

a dialogue reward score, we found a 14.4% increase for thatlea [12]

policy (a 23.8% relative increasg,< .03). These results are impor-
tant because they show that a) a policy learned using linegtibn
approximation over a very large policy space [2] is effeetior real
users, b) the automatic evaluation of the learned policyugdihg
simulated users [3, 4] is consistent with results for rea&rsisand
c) policies learned using dialogue data for one domain cansee
successfully in other similar domains or applications.

Future work, as well as conducting a larger evaluation aimbus
other domains/tasks, will explore the notion of similaritgtween
domains/tasks, and under exactly what conditions learmdidigs
are reliably portable (e.g. comparing number, type, andiing con-
straints on slots, size of database etc.). We will also dgvalito-
matic evaluation metrics for dialogue policies in simwat which
are strongly correlated with results from real evaluations

(10]

(11]

(13]

(14]

(15]

8. REFERENCES

[1] Oliver Lemon, Kallirroi Georgila, James Henderson, and
Matthew Stuttle, “An ISU dialogue system exhibiting rein-
forcement learning of dialogue policies: generic sloiffglin
the TALK in-car system,” irProceedings of EAGL2006.

James Henderson, Oliver Lemon, and Kallirroi Geordfildy-
brid Reinforcement/Supervised Learning for Dialogue Elef
from COMMUNICATOR data,” inlJCAl workshop on Knowl-
edge and Reasoning in Practical Dialogue Syste2065.

Kallirroi Georgila, James Henderson, and Oliver Lemon,
“Learning User Simulations for Information State Update Di
alogue Systems,” interspeech/Eurospeech: the 9th biennial
conference of the International Speech Communication-Asso
ciation, 2005.

Kallirroi Georgila, James Henderson, and Oliver Lemon,
“User simulation for spoken dialogue systems: Learning and
evaluation,” ininterspeech/ICSL2006, p. (to appear).

Matthew Stuttle, Jason Williams, and Steve Young, “Anfiex
work for dialog systems data collection using a simulatedRAS
channel,” inlICSLP 2004 Jeju, Korea, 2004.

E. Levin and R. Pieraccini, “A stochastic model of comgmt
human interaction for learning dialogue strategies,” Pitoc.
Eurospeech1997.

Diane Litman, Micheal Kearns, Satinder Singh, and Maril
Walker, “Automatic optimization of dialogue management,”
in Proc. COLING 2000.

Satinder Singh, Diane Litman, Michael Kearns, and Maril
Walker, “Optimizing dialogue management with reinforce-
ment learning: Experiments with the NJFun systedgurnal

of Artificial Intelligence Research (JAIR)002.

Olivier Pietquin, A Framework for Unsupervised Learning of
Dialogue StrategigsPresses Universitaires de Louvain, SIMI-
LAR Collection, 2004.

Kallirroi Georgila, Oliver Lemon, and James Hendersu-
tomatic annotation of COMMUNICATOR dialogue data for
learning dialogue strategies and user simulations,”Ninth
Workshop on the Semantics and Pragmatics of Dialogue (SEM-
DIAL: DIALOR), 2005.

M. Walker, A. Rudnicky, Aberdeen J., E. Bratt, Garofalg

H. Hastie, A. Le, B. Pellom, A. Potamianos, R. Passonneau,
R. Prasad, Roukos S., G. Sanders, S. Seneff, D. Stallard, and
S. Whittaker, “ DARPA Communicator Evaluation: Progress
from 2000 to 2001,” irfProc. ICSLP 2002.

Marilyn Walker, Candace Kamm, and Diane Litman., “To-
wards Developing General Models of Usability with PAR-
ADISE,” Natural Language Engineeringol. 6, no. 3, 2000.

Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi Oka,
“DIPPER: Description and Formalisation of an Information-
State Update Dialogue System Architecture,” 4ith SIGdial
Workshop on Discourse and DialoguSapporo, 2003, pp.
115-124.

Steve YoungATK: an application toolkit for HTK, version 1,4
2004.

Matthew Frampton and Oliver Lemon, “Learning more effe
tive dialogue strategies using limited dialogue move fies[i
in ACL, 2006.

(2]

(3]

[4]

5]

(6]

[7]

(8]

9]

