Original Paper /

Reinforcement Learning of Multi-Party Trading Dialog

Policies

Takuya Hiraoka

takuya-h@is.naist.jp

Kallirroi Georgila

Elnaz Nouri (ditto)
nouri@ict.usc.edu
David Traum (ditto)

traum@ict.usc.edu

Satoshi Nakamura

Nara Institute of Science and Technology*!

University of Southern California Institute for Creative Technologies
kgeorgilalict.usc.edu

Nara Institute of Science and Technology
s-nakamura@is.naist.jp

keywords: dialog policy, trading dialog, negotiation dialog, multi-party dialog, reinforcement learning

Summary

Trading dialogs are a kind of negotiation in which an exchange of ownership of items is discussed, and these
kinds of dialogs are pervasive in many situations. Recently, there has been an increasing amount of research on
applying reinforcement learning (RL) to negotiation dialog domains. However, in previous research, the focus was
on negotiation dialog between two participants only, ignoring cases where negotiation takes place between more than
two interlocutors. In this paper, as a first study on multi-party negotiation, we apply RL to a multi-party trading
scenario where the dialog system (learner) trades with one, two, or three other agents. We experiment with different
RL algorithms and reward functions. We use Q-learning with linear function approximation, least-squares policy
iteration, and neural fitted Q iteration. In addition, to make the learning process more efficient, we introduce an
incremental reward function. The negotiation strategy of the learner is learned through simulated dialog with trader
simulators. In our experiments, we evaluate how the performance of the learner varies depending on the RL algorithm
used and the number of traders. Furthermore, we compare the learned dialog policies with two strong hand-crafted
baseline dialog policies. Our results show that (1) even in simple multi-party trading dialog tasks, learning an effective
negotiation policy is not a straightforward task and requires a lot of experimentation; and (2) the use of neural fitted Q
iteration combined with an incremental reward function produces negotiation policies as effective or even better than

the policies of the two strong hand-crafted baselines.

1. Introduction

Trading dialogs are a kind of interaction in which an
exchange of ownership of items is discussed, possibly re-
sulting in an actual exchange. These kinds of dialogs are
pervasive in many situations, such as marketplaces, busi-
ness deals, school lunchrooms, and some kinds of games,
like Monopoly or Settlers of Catan [Guhe 12]. Most of
these dialogs are non-cooperative [Asher 13, Traum 08],
in the sense that mere recognition of the desire for one
party to engage in a trade does not provide sufficient in-
ducement for the other party to accept the trade. Usually a

*1 Currently the first author (Takuya Hiraoka) is working at the Nip-
pon Electric Company. This work was done while he was a Ph.D.
student at the Nara Institute of Science and Technology, and a visit-
ing researcher at the University of Southern California Institute for
Creative Technologies.

trade will only be accepted if it is in the perceived interest
of each party. Trading dialogs can be considered as a kind
of negotiation, in which participants use various tactics to
try to reach an agreement. It is common to have dialogs
that may involve multiple offers or even multiple trades.
In this way, trading dialogs are different from other sorts
of negotiation in which a single decision (possibly about
multiple issues) is considered, for example partitioning
a set of items [Georgila 14, Nouri 13]. Another differ-
ence between trading dialogs and partitioning dialogs is
what happens when a deal is not made. In partitioning
dialogs, if an agreement is not reached, then participants
get nothing, so there is a very strong incentive to reach a
deal, which allows pressure and can result in a “chicken
game”, where people give up value in order to avoid a to-
tal loss. By contrast, in trading dialogs, if no deal is made,

participants stick with the status quo. Competitive two-
party trading dialogs may result in a kind of stasis, where
the wealthier party will pass up mutually beneficial deals,
in order to maintain primacy. On the other hand, multi-
party trading dialogs involving more than two participants
changes the dynamic again, because now a single partici-
pant cannot necessarily even block another from acquiring
a missing resource, because it might be available through
trades with a third party. A player who does not engage in
deals may lose relative position, if the other participants
make mutually beneficial deals.

The main goal of our research is to build dialog systems
that can negotiate and trade with humans or other agents
in the real or virtual world. Imagine a dialog system per-
forming the role of a human in online auctions or market-
places. In such situations, the system should be able to
negotiate with other participants with different values of
items; some of these participants may have goals similar
to the goals of the system (collaborative), and some may
have goals that compete with the system’s goals (compet-
itive). In order for the dialog system to be successful in
trading and to decide on the right action in a particular
context, it needs to have a strong dialog policy.

In this paper, we present a first approach toward learn-
ing dialog policies for multi-party trading dialogs. We in-
troduce a simple, but flexible game-like scenario, where
items can have different values for different participants,
and also where the value of an item can depend on other
items held. We examine a number of strategies for this
game, including random, simple, and complex hand-crafted
strategies, as well as several reinforcement learning (RL)
[Sutton 98] algorithms, and examine performance with
different numbers and kinds of opponents.

In most of the previous work on statistical dialog man-
agement, RL was applied to cooperative slot-filling dialog
domains. For example, RL was used to learn the policies
of dialog systems for food ordering [Williams 07a], tourist
information [Williams 07b], flight information [Levin 00],
appointment scheduling [Georgila 10], and e-mail access
[Walker 00]. In these typical slot-filling dialog systems,
the reward function depends on whether the user’s goal has
been accomplished or not. For example, in the food order-
ing system presented by Williams and Young [Williams
07a], the dialog system earns higher rewards when it suc-
ceeds in taking the order from the user.

Recently, there has been an increasing amount of re-
search on applying RL to negotiation dialog domains, which
are generally more complex than slot-filling dialog be-
cause the system needs to consider its own goal as well
as the user’s goal, and may need to keep track of more

ATLHIREF 25 GE 31 %4 5 B (2016 4F)
information, e.g., what has been accepted or rejected so
far, proposals and arguments on the table, etc. Georgila
and Traum [Georgila 11] applied RL to the problem of
learning negotiation dialog system policies for different
cultural norms (individualists, collectivists, and altruists).
The domain was negotiation between a florist and a gro-
cer who had to agree on the temperature of a shared re-
tail space. Georgila [Georgila 13] used RL to learn the
dialog system policy in a two-issue negotiation domain
where two participants (the user and the system) orga-
nize a party, and need to decide on both the day that the
party will take place and the type of food that will be
served. Then Papangelis and Georgila [Papangelis 15]
extended this work and learned dialog policies in a four-
issue negotiation scenario. Also, Heeman [Heeman 09]
modeled negotiation dialog for a furniture layout task, and
Paruchuri et al. [Paruchuri 09] modeled negotiation dialog
between a seller and a buyer. Efstathiou and Lemon [Efs-
tathiou 14] focused on non-cooperative aspects of trading
dialog, and Georgila et al. [Georgila 14] used multi-agent
RL to learn negotiation policies in a resource allocation
scenario. Finally, Hiraoka et al. [Hiraoka 14] applied RL
to the problem of learning cooperative persuasive policies
using framing, and Nouri et al. [Nouri 12] learned mod-
els for cultural decision-making in a simple negotiation
game (the Ultimatum Game). In contrast to typical slot-
filling dialog systems, in these negotiation dialogs, the di-
alog system is rewarded based on the achievement of its
own goals rather than those of its interlocutor. For exam-
ple, in Georgila [Georgila 13], the dialog system gets a
higher reward when its party plan is accepted by the other
participant.

Note that in all of the previous work mentioned above,
the focus was on negotiation dialog between two partic-
ipants only, ignoring cases where negotiation takes place
between more than two interlocutors. However, in the real
world, multi-party negotiation is quite common. In this
paper, as a first study on multi-party negotiation, we ap-
ply RL to a multi-party trading scenario where the dia-
log system (learner) trades with one, two, or three other
agents. We experiment with different RL algorithms and
reward functions. The negotiation strategy of the learner
is learned through simulated dialog with trader simulators.
In our experiments, we evaluate how the performance of
the learner varies depending on the RL algorithm used and
the number of traders. To the best of our knowledge this
is the first study that applies RL to multi-party (more than
two participants) negotiation dialog management. We are
not aware of any previous research on dialog using RL to

Reinforcement Learning of Multi-Party Trading Dialog Policies

learn the system’s policy in multi-party negotiation.*?
Our paper is structured as follows. Chapter 2 provides
an introduction to RL. Chapter 3 describes our multi-party
trading domain. Chapter 4 describes the dialog state and
set of actions for both the learner and the trader simulators,
as well as the reward functions of the learner and the hand-
crafted policies of the trader simulators. In Chapter 5, we
present our evaluation methodology and results. Finally,
Chapter 6 summarizes the paper and proposes future work.

2. Reinforcement Learning

Reinforcement learning (RL) is a machine learning tech-
nique for learning the policy of an agent that takes some
action to maximize a reward (not only immediate but also
long-term or delayed reward). In this section, we briefly
describe RL in the context of dialog management. In di-
alog, the policy is a mapping function from a dialog state
to a particular system action. In RL, the policy’s goal is
to maximize a reward function, which in traditional task-
based dialog systems is user satisfaction or task comple-
tion [Jokinen 09]. RL is applied to dialog modeling in the
framework of Markov decision processes (MDPs) or par-
tially observable Markov decision processes (POMDPs).

In this paper, we follow an MDP-based approach. An
MDP is defined as a tuple (S, A, P, R,~) where S is the set
of states (representing different contexts) which the sys-
tem may be in (the system’s world), A is the set of actions
of the system, P : S x A — P(S, A) is the set of transition
probabilities between states after taking an action, R : S
A — R is the reward function, and ~ € [0, 1] a discount
factor weighting long-term rewards. At any given time
step ¢ the world is in some state s; € S. When the system
performs an action «; € A following a policy 7: S — A,
it receives a reward 7;(s;, ;) € R and transitions to state
$;+1 according to P(s;11]8;, ;) € P. The quality of the
policy 7 followed by the agent is measured by the expected
future reward, also called Q-function, @™ : S x A — R.

We experiment with 3 different RL algorithms:

LinQ: This is the basic Q-learning algorithm with linear
function approximation [Sutton 98]. The Q-function

%2 Note that there is some previous work on using RL to learn ne-
gotiation policies among more than two participants. For exam-
ple, Mayya et al. [Mayya 11] and Zou et al. [Zou 14] used multi-
agent RL to learn the negotiation policies of sellers and buyers in
a marketplace. Moreover, Pfeiffer [Pfeiffer 04] used RL to learn
policies for board games where sometimes negotiation takes place
among players. However, these works did not focus on negotiation
dialog (i.e., exchange of dialog acts, such as offers and responses
to offers), but only focused on specific problems of marketing or
board games. For example, in Zou et al. [Zou 14]’s work, RL was
used to learn policies for setting selling/purchasing prices in order
to achieve good payoffs.

is a weighted function of state-action features. It is
updated whenever the system performs an action and
gets a reward for that action (in contrast to batch RL
mentioned below).

LSPI: In least-squares policy iteration (LSPI), the Q-
function is also approximated by a linear function (sim-
ilarly to LinQ). However, unlike LinQ, LSPI is a batch
learning method. It samples the training data one
or more times (batches) using a fixed system policy
(the policy that has been learned so far), and the ap-
proximated Q-function is updated after each batch.
We use LSPI because it has been shown to achieve
higher performance than LinQ in tasks where states
are represented as multidimensional vectors, such as
the problem of riding a bicycle [Lagoudakis 03]. In
our domain, the agents have to keep track of infor-
mation about multiple traders, and this information
is encoded into a multidimensional vector that repre-
sents the dialog state (see Section 4 - 1). Therefore we
expect LSPI to work better than LinQ in our domain
as well.

NFQ: Neural fitted Q iteration (NFQ) uses a multi-layered
perceptron as the Q-function approximator. Like LSPI,
NFQ is a batch learning method. We introduce NFQ
because it has been shown to perform well in some
tasks [Riedmiller 05]. One such task is robot soccer
[Riedmiller 09], where the state is represented as a
multidimensional vector with a size larger than that of
the bicycle problem where LSPI is successful. In our
domain, as the number of traders increases, the size
of the vector that represents the state becomes larger
too. Therefore we expect NFQ to achieve better per-
formance in trading domains with many traders.

During training we use e-greedy exploration, i.e., the
system randomly selects an action with a probability of
€ (we used a value of 0.1 for €) otherwise it selects the
action which maximizes the Q-function given the current
state. During testing there is no exploration and the policy
is dictated by the Q-values learned during training.

3. Multi-Party Trading Domain

Our domain is trading, where two or more traders have
a number of items that they can keep or exchange with
the other traders in order to achieve their goals. The value
of each item for a trader is dictated by the trader’s pay-
off matrix. So at the end of the interaction each trader
earns a number of points based on the items that it holds
and the value of each item. Note that each trader has its
own payoff matrix. During the interaction, each trader can

trade an item with the other traders (i.e., offer an item in
exchange for another item). If the addressee of the offer
accepts it, then the items of the traders involved in this ex-
change are updated. If the offer is not accepted, the dialog
proceeds without any changes in the number of items that
each trader possesses. To make the search space of pos-
sible optimal trading policies more tractable, we assume
that (1) each trader can only trade one item at a time, (2)
only one trader is allowed to take the turn (decide to trade)
at a time, and (3) each offer is addressed only to one other
trader. Each trader can take the turn in random order, un-
less there is a pending offer. That is, if a trader makes an
offer to another trader, then the addressee of that offer has
priority to take the next turn; the addressee can decide to
accept the offer, or to do nothing, or to make a different
offer. Note that the traders do not know each other’s pay-
off matrices but they know the items that each trader owns.
The dialog is completed after a fixed period of time passes
or when all traders decide not to make any offers.

In our experiments, there are three types of items: apple,
orange, and grape, and each trader may like, hate, or feel
neutral about each type of fruit. At the end of the dialog
the trader earns 100 points for each fruit that he likes, 0
points for each fruit that he is neutral to, and —100 points
for each fruit that he hates. Payoff matrices are structured
such that there is always one fruit that each trader likes,
one fruit that he is neutral to, and one fruit that he hates.
Furthermore, all traders can get a big payoff for having
a fruit salad, i.e., the trader earns 500 additional points if
he ends up with one fruit of each type. Thus even hated
fruits may sometimes be beneficial, but only if they can be
part of a fruit salad. Thus the outcome for a trader oy, is
calculated by Equation (1).

otr = Pay(apples:) * Num(apple::)
+ Pay(orangey;) * Num(oranges,)
+ Pay(grapesr) * Num(grapes,)
(

+ Pay(salady,) (D

500 if Num(apples) > 1

and Num(oranget,) > 1
Pay(saladsr) = @3]
and Num(grapet,) > 1

0 otherwise

where Pay is a function which takes as argument a fruit
type and returns the value of that fruit type for the trader,
and Num shows the number of items of a particular fruit
type that the trader possesses. At the beginning of each
dialog, the initial conditions (i.e., number of items per

ANTHIRE S EE 31 %4 5 B (2016 4F)

fruit type and payoff matrix) of the traders (except for the
learner) are randomly assigned. The learner always has
the same payoff matrix for all dialogs, i.e., the learner al-
ways likes grape, always feels neutral about apple, and
always hates orange. Also, the total number of fruits that
the learner holds in the beginning of the dialog is always
3. However, the number of each fruit type that the learner
holds is randomly initialized for each dialog, e.g., the learner
could be initialized with (1 apple, 2 oranges, 0 grapes), or
(1 apple, 1 orange, 1 grape), etc. The total number of fruits
for each trader is determined based on his role (Rich: 4
items, Middle: 3 items, Poor: 2 items), which is also ran-
domly assigned at the beginning of each dialog. Table 1
shows two example dialogs.

4. Methodology for Learning Multi-Party Ne-
gotiation Policies

In this chapter, we present our methodology for training
the learner, including how we built our trader simulators.
The trader simulators are used as negotiation partners of
the learner for both training and evaluating the learner’s
policy (see Chapter 5).

4-1 Learner’s Model

Below we define the reward function, sets of actions,
and state of our MDP-based learner’s model. Note that we
use two kinds of rewards.

The first type of reward is based on Equation (3). In this
case, the learner is rewarded based on its outcome only at
the end of the dialog. In all other dialog turns i its reward
is 0.

o if dialog ends
Tend = . 3)
0 otherwise
We also introduce an incremental reward for training,
because rewarding a learning agent only at the end of the
dialog makes the learning problem very difficult, thus sub-
goals can be utilized to reward the learning agent incre-
mentally [McGovern 01]. The incremental reward at turn
1 is given by Equation (4), where o4,.(¢) is the outcome for
a trader applied at time point 7.

’ v*otr(i)_otr(i_l) ifi >0

r, = “)
0 ifi=0

This equation represents the improvement on the outcome

of the learner at turn ¢ compared to its outcome at the pre-

vious turn ¢ — 1. Note that this implementation of the in-

cremental reward function is basically the same as reward

Reinforcement Learning of Multi-Party Trading Dialog Policies

Table 1 Examples of two trading dialogs among traders TR1, TR2, and TR3. In these examples, the payoff matrix of
TR1 is (apple: —100, orange: 100, grape: 0), that of TR2 is (apple: —100, orange: 0, grape: 100), and that of
TR3 is (apple: 0, orange: —100, grape: 100). Item and Outcome show the number of items per fruit type of each
trader and the points that each trader has accumulated after an action. A stands for apple, O for orange, and G

for grape.
Item Outcome
Speaker | Utterance TRI TR2 TR3 TR1 [TR2 | TR3
Dialog 1:
1: TR1 TR2, could you give me an orange? | A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 | O -100 | 100
I’ll give you a grape. (Offer)
2: TR2 Okay. (Accept) A:0,0:1,G:2 | A:1,0:0,G:1 | A:0,0:1,G:2 | 100 | O 100
Dialog 2:
1: TR2 TR1, could you give me a grape? A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 | 0O -100 | 100
I’ll give you an apple. (Offer)
2: TR1 I want to keep my fruits. (Keep) A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 | 0O —-100 | 100
3: TR3 TR2, could you give me an apple? A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 | 0O —-100 | 100
I’ll give you a grape. (Offer)
4: TR2 Okay. (Accept) A:0,0:0,G:3 | A:0,0:1,G:1 | A:1,0:1,G:1 | 0 100 500

shaping, and has the following property [Ng 99, El Asri

13]: the policy learned by using Equation (4) maximizes

the expectation of the cumulative reward given by Equa-

tion (3).

The learner’s actions are presented below. By speaker
we mean the trader who is performing the action. In this
case, the speaker is the learner, but as we will see below
this is also the set of actions that a trader simulator can
perform.
Offer(A, I,, 1,):

item I, for the addressee’s item I,,.

Accept: accepting the most recent offer addressed to the
speaker.

Keep: passing the turn without doing anything. If there
is a pending offer addressed to the speaker, then this
offer is rejected.

The dialog state consists of the offered table and the dis-
tribution of the items among the negotiators:

Offered table:
ble tuples (Trading partner, Fruit requested, Fruit of-

The offered table consists of all possi-

fered in return). If another agent makes an offer to
the learner then the learner’s offered table is updated.
The dialog state is represented by binary variables (or
features). In Example 1, we can see a dialog state in
a 2-party dialog, after the learner receives an offer to
give an orange and in return take an apple.

Number of items: The number of items for each fruit
type that each negotiator possesses. Once a trade is
performed, this part of the dialog state is updated in
the dialog states of all agents involved in this trade.

Thus the learner’s state is represented as a multidimen-

sional vector that consists of (1) binary values representing

the offered table, and (2) integer values representing the

offering addressee A to trade the speaker’s

number of items. To simplify the model, the state does not
include information about previous actions of the traders.

4-2 Trader Simulator

In order to train the learner we need trader simulators to
generate a variety of trading episodes, so that in the end the
learner learns to follow actions that lead to high rewards
and avoid actions that lead to penalties. The trader simula-
tor has the same dialog state and actions as the learner. We
have as many trader simulators as traders that the learner
negotiates with. Thus in a 3-party negotiation we have 2
trader simulators. The policy of the trader simulator can
be either hand-crafted, designed to maximize the reward
function given by Equation (3); or random.

The hand-crafted policy is based on planning. More
concretely, this policy selects an action based on the fol-
lowing steps:

(1) Pre-compute all possible sets of items (called “hands”,

by analogy with card games, where each item is rep-
resented by a card), given the role of the trader (Rich,
Middle, Poor) and how many items there can be in
the hand.

(2) Compute the valuation of each of the hands, ac-
cording to the payoff matrix.

(3) Based on the possible trades with the other agents,
compute a set of achievable hands, and order them
according to the valuations defined in step 2. A hand
is “achievable” if there are enough of the right types
of items in the deal. For example, if the hand is 4
apples, and there are only 3 apples in the deal, then
this hand is not achievable.

(4) Remove all hands that have a lower valuation than

ANTHIRE S EE 31 %4 5 B (2016 4F)

Examplel Status of the learner’s dialog state’s features in a 2-party trading dialog (learner vs. Agent 1). Agent 1 has
just offered the learner 1 apple for 1 of the learner’s 2 oranges (but the learner has not accepted or rejected
the offer yet). This is why the (Agent 1, orange, apple) tuple has value 1. Initially the learner has (0 apples,
2 oranges, 1 grape) and Agent 1 has (1 apple, 0 oranges, 1 grape). Note that if we had more negotiators e.g.,
Agent 2, the dialog state would include features for offer tuples for Agent 2, and the number of items that
Agent 2 possessed.

Trading | Item requested | Item given | Occurrence
B q B . Agent who Fruit type | Number of fruits
partner | by partner by partner | binary value .
possesses fruits (used as feature)
to learner (used as feature)
Agent 1 | appl 0 apple 0
enl apple orange
& ppl & 0 learner orange 2
apple rape
pp grap grape 1
orange apple 1
apple 1
orange grape 0
Agent 1 orange 0
grape apple 0
grape 1
grape orange 0

the current hand. The remaining set is the set of achiev-
able goals.

(5) Calculate a set of plans for each achievable goal. A
plan is a sequence of trades (one item in hand for one
item out of hand) that will lead to the goal. There are
many possible plans for each goal. For simplicity, we
ignore any plans that involve cycles, where the same
hand appears more than once.

(6) Calculate the expected utility (outcome) of each plan.
Each plan will have a probability distribution of out-
comes, based on the probability that each trade is suc-
cessful. The outcome will be the hand that results

from the end state, or the state before the trade that
fails. For example, suppose the simulator’s hand is
(apple, apple, orange), and the simulator’s plan is
(apple—orange, orange—grape). The three possible
outcomes are:

(apple, orange, grape) (i.e., if the plan succeeds) the prob-
ability is calculated as P(t1) * P(t2).

(apple, orange, orange) (i.e., if the first trade succeeds
and the second fails) the probability is calculated
as P(t1) « (1 — P(t2)).

(apple, apple, orange) (i.e., if the first trade fails) the
probability is calculated as 1 — P(¢1).

Therefore, the simulator can calculate the expected
utility of each plan, by multiplying the probability
of each trade with the valuation of each hand from
step 2. We set the probability of success of each trade
to 0.5 (i.e., uninformative probability). This value of
probability represents the fact that the simulator does
not know a priori whether the trade will succeed or
not.

(7) Select the plan which has the highest expected util-
ity as the plan that the policy will follow.

(8) Select an action implementing the plan that was

chosen in the previous step, as follows: if the plan is
completed (i.e., the simulator reached the goal), the
policy will select Keep as an action. If the plan is not
completed and there is a pending offer which will al-
low the plan to move forward, the policy will select
Accept as an action. Otherwise, the policy will se-
lect Offer as an action. The addressee of the offer is
randomly selected from the traders holding the item
which is required for moving the plan forward. The
pseudocode of this step is shown in Algorithm 1.

In addition to the above hand-crafted trader simulator’s

policy, we also use a random policy.

5. Evaluation

In this chapter, we evaluate the learner’s policies learned
with (1) different algorithms i.e., LinQ, LSPI, and NFQ
(see Chapter 2), (2) different reward functions i.e., Equa-
tions (3) and (4) (see Section 4-1), and (3) different num-
bers of traders.*3

The evaluation is performed in trading dialogs with dif-
ferent numbers of participants (from 2 players to 4 play-
ers), and different trader simulator’s policies (hand-crafted
policy or random policy as presented in Section 4 -2). More
specifically, there are 9 different setups:

H: 2-party dialog, where the trader simulator follows a
hand-crafted policy.

R: 2-party dialog, where the trader simulator follows a
random policy.

HxH: 3-party dialog, where both trader simulators fol-
low hand-crafted policies.

*3 Source files to replicate these experiments are available at:
https://github.com/TakuyaHiraoka/
Reinforcement-Learning-in-Multi-Party—
Trading-Dialog

Reinforcement Learning of Multi-Party Trading Dialog Policies

Algorithm 1 Action selection of the hand-crafted policy

Require: The following variables are given:
(1) Index of the trader <.
(2) Set of other traders 7.
(3) Trader’s plan P = [[I0,I7], ..., [I],I]],...], where
I} represents the item that the trader will give in the
jth trade, and I’ represents the item that the trader
will receive in return in the jth trade.
(4) Offered table O that returns a binary value ac-
cording to the given tuple (Trading partner, Fruit re-
quested, Fruit offered in return).
(5) Number of items N that returns an integer value
according to the given tuple (Trader, Fruit).
(6) Set of possible addressees A for the first trade of
the plan.
if P = ¢ then

return Keep
end if
fort € T~ do

if O[(¢,10,10)] == 1 then

ytgorTr

—_

return Accept
end if
end for
Ae{)
fort € T~ do
if N[(¢,1°)] >=1 then
A+—tUA
end if
end for

R AN G S i

—_ s e e e
DA LN = O

: randomly select an addressee of an offer ¢ from A
return Offer(a, 7, I))

a

HxR: 3-party dialog, where one trader simulator follows
a hand-crafted policy and the other one follows a ran-
dom policy.

RxR: 3-party dialog, where both trader simulators fol-
low random policies.

HxHxH: 4-party dialog, where all three trader simula-
tors follow hand-crafted policies.

HxHxR: 4-party dialog, where two trader simulators fol-
low hand-crafted policies and the other one follows a
random policy.

HxRxR: 4-party dialog, where one trader simulator fol-
lows a hand-crafted policy and the other ones follow
random policies.

RxRxR: 4-party dialog, where all three trader simula-
tors follow random policies.

There are also 9 different learner policies:

AlwaysKeep: weak baseline which always passes the
turn.

Random: weak baseline which randomly selects one ac-
tion from all possible valid actions.

LinQ-End: learned policy using LinQ and reward given
at the end of the dialog.

LSPI-End: learned policy using LSPI and reward given
at the end of the dialog.

NFQ-End: learned policy using NFQ and reward given
at the end of the dialog.

LinQ-Incr: learned policy using LinQ and an incremen-
tal reward.

LSPI-Incr: learned policy using LSPI and an incremen-
tal reward.

NFQ-Incr: learned policy using NFQ and an incremen-
tal reward.

Handcraftl: strong baseline following the hand-crafted
policy presented in Section 4-2.

Handcraft2: strong baseline similar to Handcraftl ex-
cept the plan is randomly selected from the set of
plans produced by step 6, rather than picking only the
highest utility one (see Section 4-2).

We use the Pybrain library [Schaul 10] for the RL algo-

rithms LinQ, LSPI, and NFQ. The learning parameters

follow the default Pybrain settings except for the discount
factor ~; we set the discount factor 7 to 1. We consider

2000 dialogs as one epoch, and learning is finished when

the number of epochs becomes 200 (400000 dialogs). The

policy at the epoch where the average reward reaches its
highest value is used in the evaluation.

We evaluate the learner’s policy against trader simula-
tors. We calculate the average reward of the learner’s pol-
icy in 20000 dialogs. Furthermore, we show how fast the
learned policies converge as a function of the number of
epochs in training.

In terms of comparing the average rewards of policies
(see Figure 1), NFQ-Incr achieves the best performance
in almost every situation. In 2-party trading, the perfor-
mance of NFQ-Incr is almost the same as that of Hand-
craft2 which achieves the best score, and better than the
performance of Handcraftl. In both 3-party and 4-party
trading, the performance of NFQ-Incr is better than that of
the two strong baselines, and achieves the best score. In
contrast to NFQ-Incr, the performance of the other learned
policies is much worse than that of the two strong base-
lines. As the number of trader simulators who follow a
random policy increases, the difference in performance
between NFQ-Incr and the other learned policies tends to
also increase. One reason is that, as the number of trader
simulators who follow a random policy increases, the vari-
ability of dialog flow also increases. Trader simulators
that follow a hand-crafted policy behave more strictly than

trader simulators that follow a random policy. For exam-
ple, if the trader simulator following a hand-crafted policy
reaches its goal, then there is nothing else to do except for
Keep. In contrast, if a trader simulator following a random
policy reaches its goal, there is still a chance that it will
make an offer which will be beneficial to the learner. As a
result there are more chances for the learner to gain better
outcomes, when the complexity of the dialog is higher. In
summary, our results show that combining NFQ with an
incremental reward produces the best results.

Moreover, the learning curve in 2-party trading (Fig-
ure 2) indicates that, basically, only the NFQ-Incr achieves
stable learning. NFQ-Incr reaches its best performance
from epoch 140 to epoch 190. On the other hand, LSPI
somehow converges fast, but its performance is not so
high. Moreover, LinQ converges in the first epoch, but
it performs the worst.

Note that the above results depend on the experimental
setup, especially the properties of the trader simulators. If
different types of simulators had been used then the exper-
imental results might have been different.

Table 2 shows the average number (per dialog) of each
one of the learner’s actions (Offer, Accept, Keep). It also
shows the average number of the offers of the learner that
are accepted by the other traders, the average number of
all actions performed by the learner, and the average num-
ber of all turns (all actions performed by all traders), per
dialog, over 20000 dialogs in the 3-party situation. First,
for each policy, we focus on the distribution of each one of
its actions in HxH, and we can see that the average num-
ber of NFQ-Incr’s “Accepted offers” is 0.350, which is the
highest among all policies (except for the random policy).
This result indicates that when NFQ-Incr trades with op-
ponents (trader simulators) that follow hand-crafted poli-
cies, it makes appropriate offers that consider its oppo-
nents’ needs (or plans). The hand-crafted trader simula-
tors always accept reasonable offers that are required for
proceeding with their plans. NFQ-Incr has learned to ex-
ploit this property of the hand-crafted trader simulators in
order to achieve better outcomes. Next, we focus on the
distribution of each one of NFQ-Incr’s actions in dialogs
with trader simulators that follow a random policy. From
Table 2, we can see that, as the number of trader simulators
that follow a random policy increases, the average number
of NFQ-Incr’s “Accept” actions also increases. The av-
erage number of NFQ-Incr’s “Accept” actions in HxH is
0.001, but it becomes 0.329 in HxR and 0.775 in RxR.
This shows that trader simulators that follow random poli-
cies tend to offer trades profitable to the learner, and NFQ-
Incr learns to exploit this property in order to achieve bet-

ANTHIRE S EE 31 %4 5 B (2016 4F)

ter outcomes.

It is interesting that, even in this simple trading domain,
applying RL does not always produce good policies. With-
out the incremental reward of Equation (4), all the RL al-
gorithms that we use fail to learn policies comparable to or
better than the two strong baselines (Figure 1). Even when
the incremental reward is used, our RL algorithms (except
for NFQ) fail to learn successful policies. This shows that
our domain is quite complex, and certainly not easier than
other domains to which RL has been successfully applied
so far, e.g., slot-filling.

To measure the validity and portability of our learned
policies, we perform additional experiments in which the
trader simulators follow different policies in the training
and evaluation phases:

H’xH’: the learner’s policy is learned in HxH, but the
learned policy is evaluated in 3-party dialog where
both trader simulators follow Handcraft2.

H’xR: the learner’s policy is learned in HxR, but the
learned policy is evaluated in 3-party dialog where
one trader simulator follows Handcraft2 and the other
one follows a random policy.

Below we discuss our evaluation results (Figure 3, Table 3,

and Figure 4), with regard to the validity and portability of

our learned policies (especially NFQ-Incr).

Validity: In Figure 3, we can see that, in contrast to the
experimental result shown in Figure 1, NFQ-Incr per-
forms slightly worse than the two strong baselines.
One reason for this is that NFQ-Incr is learned against
trader simulators following Handcraft1, and thus these
learned policies could be overfitted to these trader sim-
ulators. NFQ-Incr is very conservative while inter-
acting with other trader simulators in HxH. NFQ-Incr
does not accept most of the offers of the trader sim-
ulators (Table 2), but it works better than the two
strong baselines in this setting (Figure 1). In con-
trast, in H’xH’ the two strong baselines that accept
more offers from the other simulators than NFQ-Incr
(Table 3), achieve better performance than NFQ-Incr
(Figure 3). This shows that a conservative strategy
works better against Handcraftl than Handcraft2. To
avoid such overfitting and produce policies that can
perform well in various trading domains, learning should
be performed against trader simulators that follow a
variety of policies.

Portability: Although NQF-Incr does not outperform the
two strong baselines in H’xH’ and H’xR, it performs
much better than the weak baselines (Figure 3). There-
fore, if the learner is required to adapt to a new trading
situation, we can potentially use the policy learned

Reinforcement Learning of Multi-Party Trading Dialog Policies

450
400
350
300

Average reward
[- N N
o (%4 o v
o o o o

(%]
o

Average rewards in H

0 I IIIIIIII I Illll“‘

Average rewards in R

B Random 1 AlwaysKeep ®LinQ-End W LSPI-End m NFQ-End mLinQ-Incr mLSPI-incr ®NFQ-Incr ®m Handcraftl ® Handcraft2

450
400
350

Average reward
8 8 8 &8 8

v
o

Average rewards in HxH Average rewards in HXR Average rewards in RxR

m Random = AlwaysKeep ™ LinQ-End mLSPI-End m NFQ-End ® LinQ-Incr mLSPl-Incr B NFQ-Incr ®m Handcraftl W Handcraft2

450
400
350

Average reward
[- N N w
o o o u o
& &6 & © &

wv
o

Average rewards in HxHxH Average rewards in HXHxR

Average rewards in HXRxR Average rewards in RXRxR

M Random M AlwaysKeep M LinQ-End M LSPI-End M NFQ-End M LinQ-Incr MLSPl-Incr M NFQ-Incr M Handcraftl M Handcraft2

Fig. 1 Comparison of RL algorithms and types of reward functions. The upper figure corresponds to 2-party dialog, the
middle figure to 3-party dialog, and the lower figure to 4-party dialog. In these figures, the performances of the
policies are evaluated by using the reward function given by Equation (3).

with NFQ-Incr as an initial policy of the learner. We
perform a preliminary experiment to evaluate the ef-
fect of transferring a learned policy to a new domain,
which results in faster convergence during learning
and policies that are as good or even better than Hand-
craftl (Figure 4).

In our experiments, we focus on trading dialogs among
a small number of traders, and thus we do not need to ap-
ply scaling approaches to the state/action space of each

trader. However, as the number of traders increases, the
state/action space of each trader can become large and in-
tractable. It is possible that a large state space includes
redundant information. In such a case, to scale the state
space to a tractable size, it makes sense to consider only
important information. For example, in our trading do-
main, if we know that a trader can perform well based
only on information about (1) the current offer (i.e., what
fruit is requested and what fruit is offered in return), and

10 ALHgEF2iwmGEE 31 %45 B (2016 4F)

250

200 :-'. oo .:

lsp b et

e
g'. _.' o . oo .
% 100 ";‘) Loty V A ' '
[(4 v NG 2 ’
o l~ \\‘*‘ f' ’M U ™ - AN '.s N
g I"l/\‘* "“ ﬂ‘a , > "\ l“ ‘ ’ ' ‘\c.ll VQ “R' \QW\J‘ ‘l‘l V
> "\\ " ’\‘0 " \,’ AN
< 50 v o v., Vs
A PUSRE AW e
|'/ \, L \
"N
0 "\ casyd® ~\’~\,‘.l
‘—ILDHKDHmﬁmHEDHLDHQDHkDrlﬂDHRDHLDHKOHKDH\DHKDH\DHLD'H‘@HU)H‘D
AN AN NS NN O ONMNOOOO0OODOOOD OO dd NN OMMSTET NN O ON™~NMNO a O
L B B B B B I T T B B B B B B O B B B |
-50
= LinQ-End in HxH LinQ-End in HxR LinQ-End in RXR ++<<++ LSPI-End in HXH <<=+ LSPI-End in HxR
~~~~~~ LSPI-End in RXR === NFQ-End in HXH === NFQ-End in HXR === NFQ-End in RxR
350
300 , PRI anay v n, »1'"\:“" LoV sty
A,|‘. h’\,"'~ YN '['\"‘-/ \l v
250 A
~A L, NN ’
- N v ,\I~~‘ \vl‘\a\'
g 200 v ’ N N ~ Noo N NCAL N2, I‘v““"\'
£ "I \J‘I‘IM ’/.v,".o\.[ \ ‘ ) - \ V' LV A ) P4 27 N
g \
3 150 AT
5 E'l"' Vo
g PRI . .
o 100 RN
& H .—‘\’4\~-\lv\' \-'\-\II“‘QVI‘I’Il’”’\’\\’,\"l O AT VAR id aatd DT
g 50 ‘PN ;l"v \.'. o te. avaaiten oot eeSte oo 8 ae s . B L LN £
e - Y AL R -,. o" o 0 - e . u . Do) oo o
-
0 Ao
O =4 O «d O -+ OV d OV d O d OOV dOVdOdWOU-dWOWUdVUudOVu-dVu-dVd0-dVvudu dv
NN NN O ONMNOOONONDOOOO A d AN AN MMSTE T 0N WM OWOWNMNOWOWOO O
_50‘ ™ = A A A A A A A A A A A A A A A A
-100
== LinQ-Incrin HxH LinQ-Incr in HxR ====LinQ-Incr in RxR
------ LSPI-Incr in HxH sesses LSPI-Incrin HXR #e+e«+ LSPI-Incrin RXxR
= == NFQ-Incrin HxH === NFQ-Incrin HxR === NFQ-Incrin RxR
Fig. 2 Number of epochs vs. performance of learned policies in 3-party trading. The upper figure shows the performance
when the reward is given by Equation (3). The lower figure shows the performance when the reward is given by
Equation (4).
450
400
350
5 300
©
3 250
()
& 200
2
< 150
100
0
Average rewards in H'xH' Average rewards in H'xR
W Random 1 AlwaysKeep ®LinQ-End M LSPI-End ® NFQ-End ® LinQ-Incr mLSPIl-Incr ® NFQ-Incr ®Handcraftl B Handcraft2
Fig. 3 Comparison of RL algorithms and types of reward functions in 3-party dialog. In these figures, the performances
of the policies are evaluated by using the reward function given by Equation (3).
(2) the number of fruits that the trader possesses, we can traders. We can scale the traders’ action spaces in the same
reconstruct a new state, which consists of this information manner. This type of scaling is similar to the summary

only, and its size will be independent of the number of state [Williams 07b] and summary action [Thomson 10]



Reinforcement Learning of Multi-Party Trading Dialog Policies

Table2 Averages of the number of each one of the learner’s actions per dialog, of the number of total turns, and of
achievements of fruit salad per dialog, over 20000 dialogs in 3-party trading. Note that “Accepted offer” is an
offer made by the learner that is accepted by the other traders.

HxH Offer Accepted offer Accept Keep Total actions Total turns Fruit salad
Random 3.577 0.463 0.191 1.169 4.937 14.534 0.156
AlwaysKeep | 0.000 0.000 0.000 4.231 4.231 11.003 0.227
LinQ-End 6.296 0.076 0.000  0.002 6.298 17.876 0.210
LSPI-End 1.546 0.115 0.245 2337 4.128 11.001 0.165
NFQ-End 5.266 0.172 0.094  0.447 5.807 16.785 0.197
LinQ-Incr 6.312 0.078 0.000  0.000 6.312 17.911 0.206
LSPI-Incr 5.462 0.170 0.128  0.306 5.896 16.835 0.270
NFQ-Incr 4.520 0.350 0.001 00914 5.435 15.462 0.355
Handcraftl 3.078 0.128 0.024  2.030 5.131 14.091 0.329
Handcraft2 3.370 0.197 0.137  1.585 5.092 14.386 0.343
HxR Offer Accepted offer Accept Keep Total actions Total turns Fruit salad
Random 4.204 0.465 0.311  1.254 5.769 16.084 0.168
AlwaysKeep | 0.000 0.000 0.000 4.518 4.518 11.804 0.222
LinQ-End 0.017 0.000 0.000 4.552 4.569 11.927 0.219
LSPI-End 2.018 0.050 0.393 2407 4.818 12.562 0.219
NFQ-End 5.386 0.251 0.187  0.829 6.401 17.732 0.170
LinQ-Incr 6.632 0.082 0.001  0.001 6.633 18.651 0.214
LSPI-Incr 5.826 0.229 0.143  0.785 6.754 18.866 0.219
NFQ-Incr 5.069 0.190 0.329  0.933 6.331 17.213 0.626
Handcraftl 2.529 0.189 0.213  2.863 5.605 14.847 0.532
Handcraft2 3.326 0.273 0.343 2.134 5.803 15.769 0.459
RxR Offer Accepted offer Accept Keep Total actions Total turns Fruit salad
Random 4.656 0.600 0.531 1.247 6.434 17.941 0.178
AlwaysKeep | 0.000 0.000 0.000 5.106 5.106 14.183 0.218
LinQ-End 7.071 0.302 0.000  0.000 7.071 19.889 0.177
LSPI-End 6.334 0.312 0.685  0.049 7.067 19.864 0.101
NFQ-End 5.123 0.304 0.351 1.170 6.644 18.556 0.177
LinQ-Incr 7.056 0.304 0.000  0.000 7.056 19.896 0.171
LSPI-Incr 2.499 0.156 0.539  2.963 6.001 16.626 0.364
NFQ-Incr 4.081 0.256 0.775 1977 6.833 18.379 0.801
Handcraftl 1.810 0.244 0.370  3.830 6.010 16.197 0.701
Handcraft2 2.742 0.365 0.581  2.930 6.253 17.082 0.591

approaches. However, to apply these scaling approaches,
we need to know what features are really important for
successful trading. This is not always easy to do man-
ually, but we could instead use unsupervised learning or
feature selection techniques to automatically construct the
state/action space.

Our current setup assumes that each trader knows the
number of items that the other traders possess, but in a
real life setting this may not be possible. In that case, it
would be more difficult for the trader to perform well, and
he may need to keep track of recent trades. Our current
model does not take into account the trade history (e.g.,

what trades have succeeded or failed so far). Therefore if
the trader does not know the number of items that the other
traders have, he may ask his trading partner to provide an
item that the partner does not possess. Even if the trader
can keep track of the trade history, this additional infor-
mation may not necessarily help him make an appropriate
offer. The reason is that a trade that failed in a previous
turn, may succeed after a redistribution of items resulting
from trades between other parties.



NTHBEF R 31 %45 B (2016 48)

Table3 Averages of the number of each one of the learner’s actions per dialog, of the number of total turns, and of
achievements of fruit salad per dialog, over 20000 dialogs in 3-party trading. Note that “Accepted offer” is an
offer made by the learner that is accepted by the other traders.

HxH’ Offer Accepted offer Accept Keep Total actions Total turns Fruit salad
Random 4.427 0.808 0.364 1.346 6.137 17.655 0.144
AlwaysKeep | 0.000 0.000 0.000 5.763 5.763 14.748 0.222
LinQ-End 6.970 0.272 0.000  0.002 6.973 19.365 0.175
LSPI-End 2.511 0.249 0.525 2.667 5.702 15.268 0.106
NFQ-End 5.892 0.443 0.217  0.521 6.630 18.779 0.166
LinQ-Incr 6.954 0.260 0.000  0.001 6.955 19.309 0.169
LSPI-Incr 6.068 0.525 0.283  0.367 6.717 18.890 0.262
NFQ-Incr 5.286 0.635 0.003  1.269 6.558 18.076 0.429
Handcraftl 2.406 0.332 0.071  3.818 6.294 16.540 0.545
Handcraft2 3.045 0.424 0.237 2994 6.276 16.957 0.486
H’xR Offer Accepted offer Accept Keep Total actions Total turns Fruit salad
Random 4.545 0.705 0452 1.324 6.321 17.626 0.161
AlwaysKeep | 0.000 0.000 0.000 5.631 5.631 15.015 0.222
LinQ-End 0.019 0.001 0.000 5.616 5.636 15.064 0.219
LSPI-End 2.674 0.139 0.610 2.511 5.796 15.619 0.134
NFQ-End 5.538 0.374 0.244 0941 6.723 18.703 0.164
LinQ-Incr 6.901 0.271 0.001  0.000 6.902 19.191 0.172
LSPI-Incr 5.643 0.433 0.176  1.134 6.953 19.346 0.312
NFQ-Incr 5.035 0.401 0436 1.260 6.730 18.193 0.524
Handcraftl 2.146 0.283 0.223  3.952 6.320 16.667 0.625
Handcraft2 2.943 0.391 0.388  3.047 6.379 17.156 0.541
300
250 T - P Y S e, 2
el — ] AALPNAMIAN WA A na N
g 150 i/*,“MY 7\-
2
g 100 m
<
0 |
T“’:3253*?33353:£$£3*§§§§§§§§§§§§§§E§§§§§
-50
-100
e NFQ-Incrin H'xH' NFQ-Incrin H'xR NFQ-Incr-adapt in H'xH'
------ NFQ-Incr-adapt in H'XR === Avg. Handcraftl in H'xH' Avg. Handcraftl in H'xR

Fig. 4 Number of epochs vs. performance of learned policies in 3-party trading. The figure shows the performance
when the reward is given by Equation (4). NFQ-Incr-adapt uses policies learned in different trading domains as
initial policies. In this experiment, the policy learned in HxH is used as an initial policy in H’xH’, and the policy
learned in HxR is used as an initial policy in H’xR. Avg. Handcraftl represents the average cumulative reward

of Handcraft1 over 20000 dialogs.

6. Conclusion

In this paper, we used RL to learn the dialog system’s

(learner’s) policy in a multi-party trading scenario. We ex-

perimented with different RL algorithms and reward func-
tions. The negotiation policies of the learner were learned
and evaluated through simulated dialog with trader simu-
lators. We presented results for different numbers of traders.



Reinforcement Learning of Multi-Party Trading Dialog Policies

Our results showed that (1) even in simple multi-party
trading dialog domains, learning an effective negotiation
policy is not a straightforward task and requires a lot of
experimentation; and (2) the use of neural fitted Q itera-
tion combined with an incremental reward function pro-
duces as effective or even better negotiation policies than
the policies of two strong hand-crafted baselines. These
experimental results depend on the properties of the trader
simulators.

For future work we will expand the dialog model to aug-
ment the dialog state with information about the estimated
payoff matrix of other traders. This means expanding from
an MDP-based dialog model to a POMDP-based model.
We will also apply multi-agent RL [Georgila 14] to multi-
party trading dialog. Furthermore, we will perform eval-
vation with human traders. Finally, we will collect and
analyze data from human trading dialogs in order to im-
prove our models and make them more realistic.

Acknowledgments
This research was partially supported by the 2014 Global

Initiatives Program, JSPS KAKENHI Grant Number 24240032,

and the Commissioned Research of the National Institute
of Information and Communications Technology (NICT),
Japan. This material was also based in part upon work sup-
ported by the National Science Foundation under Grant
Number IIS-1450656, and the U.S. Army. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation
or the United States Government, and no official endorse-
ment should be inferred.

> References <

[Asher 13] Asher, N., and Lascarides, A.: Strategic conversation, Se-
mantics and Pragmatics, Vol. 6, pp. 1-62 (2013)

[Efstathiou 14] Efstathiou, I., and Lemon, O.: Learning non-
cooperative dialogue behaviours, In Proc. of SIGDIAL, pp. 60-68
(2014)

[El Asri 13]  El Asri, L., Laroche, R., and Pietquin, O.: Reward shap-
ing for statistical optimisation of dialogue management, In Proc. of
SLSP, pp. 93-101 (2013)

[Georgila 10] Georgila, K., Wolters, M. K., and Moore, J. D.: Learn-
ing dialogue strategies from older and younger simulated users, In
Proc. of SIGDIAL, pp. 103-106 (2010)

[Georgila 11] Georgila, K., and Traum, D.: Reinforcement learning
of argumentation dialogue policies in negotiation, In Proc. of IN-
TERSPEECH, pp. 2073-2076 (2011)

[Georgila 13] Georgila, K.: Reinforcement learning of two-issue ne-
gotiation dialogue policies, In Proc. of SIGDIAL, pp. 112-116
(2013)

[Georgila 14]  Georgila, K., Nelson, C., and Traum, D.: Single-agent
vs. multi-agent techniques for concurrent reinforcement learning of
negotiation dialogue policies, In Proc. of ACL, pp. 500-510 (2014)

[Guhe 12] Guhe, M., and Lascarides, A.: Trading in a multiplayer
board game: Towards an analysis of non-cooperative dialogue, In
Proc. of CogSci., pp. 1626-1631 (2012)

[Heeman 09] Heeman, P. A.: Representing the reinforcement learning
state in a negotiation dialogue, In Proc. of ASRU, pp. 450455 (2009)

[Hiraoka 14] Hiraoka, T., Neubig, G., Sakti, S., Toda, T., and Naka-
mura, S.: Reinforcement learning of cooperative persuasive dialogue
policies using framing, In Proc. of COLING, pp. 17061717 (2014)

[Jokinen 09] Jokinen, K., and McTear, M.: Spoken dialogue systems,
Synthesis Lectures on Human Language Technologies, Morgan &
Claypool (2009)

[Lagoudakis 03] Lagoudakis, M. G., and Parr, R.: Least-squares pol-
icy iteration, Journal of Machine Learning Research, Vol. 4, pp.
1107-1149 (2003)

[Levin 00] Levin, E., Pieraccini, R., and Eckert, W.: A stochastic
model of human-machine interaction for learning dialog strategies,
IEEE Transactions on Speech and Audio Processing, Vol. 8, No. 1,
pp. 11-23 (2000)

[Mayya 11] Mayya, Y., Kyung, L. T., and Seok, K. I.: Negotiation
and persuasion approach using reinforcement learning technique on
broker’s board agent system, In Proc. of NCM, pp. 30-34 (2011)

[McGovern 01] McGovern, A., and Barto, A. G.: Automatic discov-
ery of subgoals in reinforcement learning using diverse density, Com-
puter Science Department Faculty Publication Series, 8 pages (2001)

[Ng99] Ng, A. Y., Harada, D., and Russell, S.: Policy invariance un-
der reward transformations: Theory and application to reward shap-
ing, In Proc. of ICML, pp. 278-287 (1999)

[Nouri 12] Nouri, E., Georgila, K., and Traum, D.: A cultural
decision-making model for negotiation based on inverse reinforce-
ment learning. In Proc. of CogSci., pp. 2097-2102 (2012)

[Nouri 13] Nouri, E., Park, S., Scherer, S., Gratch, J., Carnevale, P.,
Morency, L. P., and Traum, D.: Prediction of strategy and outcome
as negotiation unfolds by using basic verbal and behavioral features,
In Proc. of INTERSPEECH, pp. 1458-1461 (2013)

[Papangelis 15] Papangelis, A., and Georgila, K.: Reinforcement
learning of multi-issue negotiation dialogue policies, In Proc. of SIG-
DIAL, pp. 154-158 (2015)

[Paruchuri 09] Paruchuri, P., Chakraborty, N., Zivan, R., Sycara, K.,
Dudik, M., and Gordon, G.: POMDP based negotiation modeling, In
Proc. of MICON, pp. 66-78 (2009)

[Pfeiffer 04] Pfeiffer, M.: Reinforcement learning of strategies for
Settlers of Catan, In Proc. of the International Conference on Com-
puter Games: Artificial Intelligence, Design and Education (2004)

[Riedmiller 05] Riedmiller, M.: Neural fitted Q iteration - first expe-
riences with a data efficient neural reinforcement learning method, In
Proc. of ECML, pp. 317-328 (2005)

[Riedmiller 09] Riedmiller, M., Gabel, T., Hafner, R., and Lange, S.:
Reinforcement learning for robot soccer. Autonomous Robots, Vol.
27, No. 1, pp. 55-73 (2009)

[Schaul 10] Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M.,
Sehnke, F., RiickstieB T., and Schmidhuber, J.: Pybrain, Journal of
Machine Learning Research, Vol. 11, pp. 743-746 (2010)

[Sutton 98] Sutton, R. S., and Barto, A. G.: Reinforcement Learning:
An Introduction, MIT Press Cambridge (1998)

[Thomson 10] Thomson, B., and Young, S.: Bayesian update of di-
alogue state: A POMDP framework for spoken dialogue systems,
Computer Speech and Language, Vol. 24, No. 4, pp. 562-588 (2010)

[Traum 08] Traum, D.: Extended abstract: Computational models of
non-cooperative dialogue, In Proc. of SEMDIAL-LONDIAL (2008)

[Walker 00] Walker, M. A.: An application of reinforcement learn-
ing to dialogue strategy selection in a spoken dialogue system for
email, Journal of Artificial Intelligence Research, Vol. 12, pp. 387—
416 (2000)

[Williams 07a] Williams, J. D., and Young, S.: Partially observable
Markov decision processes for spoken dialog systems, Computer
Speech and Language, Vol. 21, No. 2, pp. 393-422 (2007)

[Williams 07b]  Williams, J. D., and Young, S.: Scaling POMDPs for
spoken dialog management, IEEE Transactions on Audio Speech and
Language Processing, Vol. 15, No. 7, pp. 2116-2129 (2007)

[Zou 14] Zou, Y., Zhan, W., and Shao, Y.: Evolution with reinforce-
ment learning in negotiation, PLoS One, Vol. 9, No. 7 (2014)



14

(#124Z 5 : Danushka Bollegala)

Received December 25, 2015.

———— Author’s Profile

Hiraoka, Takuya

Takuya Hiraoka graduated from the Department of Infor-
matics, Faculty of Science and Engineering, Kinki Univer-
sity in Japan in 2011. He completed the Ph.D. program at
the Graduate School of Information Science, Nara Institute
of Science and Technology (NAIST) in Japan in 2016. Cur-
rently he is a researcher at the Nippon Electric Company
Central Research Laboratories.

Georgila, Kallirroi

Kallirroi Georgila is a Research Assistant Professor at the
Institute for Creative Technologies and at the Computer Sci-
S} ence Department of the University of Southern California
4 \ (USC). Before joining USC in 2009 she was a Research Sci-
2 entist at the Educational Testing Service (ETS) in Princeton,
USA, and before that a Research Fellow at the School of
Informatics of the University of Edinburgh, in the United
Kingdom. Her research interests include all aspects of spo-
ken dialogue processing with a focus on reinforcement learning of dialogue poli-
cies, expressive conversational speech synthesis, and speech recognition. Georgila
has published over 80 journal articles, conference papers, and technical reports on
various topics in spoken dialogue processing. She has served on the organizing,
senior, and program committees of many conferences and workshops, including
being General Co-Chair for SIGDIAL 2014, Mentoring Chair for SIGDIAL 2012
and 2013, Associate Chair for ICMI 2013, Area Chair for EACL 2012, and Pro-
gram Co-Chair for SemDial 2011.

Nouri, Elnaz

Elnaz Nouri is a Ph.D. candidate at the Computer Science
Department of the University of Southern California. She is
a Provost Fellowship recipient and a member of the Natu-
ral Dialogue group at the Institute for Creative Technologies
where she works under the supervision of Dr. Traum. Her
Ph.D. thesis proposes a framework for developing culture
sensitive models for decision making in social interactions.

Traum, David

David Traum is the Director of Natural Language Research
at the Institute for Creative Technologies (ICT) and a Re-
search Faculty member of the Department of Computer Sci-
ence at the University of Southern California (USC). He
leads the Natural Language Dialogue Group at ICT. More
information about the group can be found here: http://
nld.ict.usc.edu/group/ Traum’s research focuses
on Dialogue Communication between Human and Artificial
Agents. He has engaged in theoretical, implementational and empirical approaches
to the problem, studying human-human natural language and multi-modal dialogue,
as well as building a number of dialogue systems to communicate with human
users. Traum has authored over 200 refereed technical articles, is a founding editor
of the Journal Dialogue and Discourse, has chaired and served on many conference
program committees, and is a past President of SIGDIAL, the international spe-
cial interest group in discourse and dialogue. Traum earned his Ph.D. in Computer
Science at the University of Rochester in 1994.

Nakamura, Satoshi (Member)

Satoshi Nakamura is Professor of Graduate School of Infor-
mation Science, Nara Institute of Science and Technology,
Japan, Honorar professor of Karlsruhe Institute of Technol-
ogy, Germany, and ATR Fellow. He received his B.S. from
Kyoto Institute of Technology in 1981 and Ph.D. from Ky-
oto University in 1992. He was Director of ATR Spoken
Language Communication Research Laboratories in 2000-
2008 and Vice president of ATR in 2007-2008. He was
Director General of Keihanna Research Laboratories, National Institute of Infor-
mation and Communications Technology, Japan in 2009-2010. He is currently
Director of Augmented Human Communication laboratory and a full professor of
Graduate School of Information Science at Nara Institute of Science and Tech-
nology. He is interested in modeling and systems of speech-to-speech translation,

NTHBEF R 31 %45 B (2016 48)

spoken dialog, and speech recognition. He has been serving for various speech-to-
speech translation research projects in the world including C-STAR, IWSLT, and
A-STAR. He received many domestic academic awards including Kiyasu Award
from the Information Processing Society of Japan, ASJ Award for Distinguished
Achievements in Acoustics. He also received the Commendation for Science and
Technology by the Minister of Education, Science and Technology, and the Min-
ister of Internal Affair and Communications. He also received LREC Antonio
Zampoli Award 2012. He is an Elected Board Member of International Speech
Communication Association, ISCA, since June 2011, IEEE Speech and Language
Technology Committee member since April 2012, and IEEE Fellow from 2016.



