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Asstracr: A human-computer dialogue system should be able to handle spontaneous
ungrammatical sentences in the analysis-recognition stage and at the same time generate
grammatically correct responses. Moreover, the constraint of not having enough domain-
dependent training material should be overcome. In this paper we present a method able to
cope with the above phenomena. It is an incremental data-driven process based on the Viterbi
algorithm, which given as input a set of sentences, produces a Hidden Markov Model (HMM)
that incorporates grammatical structure provided by large context dependencies as well as
coverage of ungrammatical spontaneous sentences provided by statistical estimations.
Furthermore, the algorithm generalises the sample data, thereby reducing the required
amount of training samples for acquiring reliable models. Adjustment of parameters may lead
to a model where stochastic features supersede grammatical structure and the contrary. In
the first case, the output HMM can be used as a robust flexible language model in the
analysis-recognition stage. In the second case, the HMM becomes appropriate for generating
valid system responses without the need of grammars.

Risunt: Un systeme de dialogue entre I’ homme et I’ ordinateur devrait étre capable de gérer
des phrases spontanées agrammaticales dans le stade de |’ analyse et de la récognition et, au
méme temps, de générer des réponses grammaticalement correctes. On doit aussi resoudre le
probleme de n’ avoir que de training matériel limité pour chaque application specifique. Une
méthode capable de se débrouiller entre ces deux difficultés est presentée dans ce travail. Il s’
agit d’ un procés données—dirigé incrémental, fondé sur |’ algorithme Viterbi, qui, donné
comme input un ensemble de phrases, produit un HMM qui incorpore structure grammaticale
procurée par larges dependences de context et couverture de phrases spontanées
agrammaticales procurées par estimations statistiques. En outres, |’ algorithme généralise les
données d’ echantillon et reduit la quantité de training données exigée pour obtenir des
modeéles précises. Ajustement des paramétres peut guider a un modele ou les caractéristiques
stochastiques déplacent la structure grammaticale et au contraire. En prenier cas, |’ output
HMM peut étre utilisé comme un modeéle de langage flexible et robuste dans le stade de I’
analyse et de la récognition. En deuxieme cas, le HMM devient approprié a générer des
réponses du systéme valides sans avoir besoin de grammaire.

Ker Worps: language modelling, language generation, HMM, finite-state automata

Mors-Cris: modéliser de langage, generation de langage, HMM, automates d’ état fini



1. Introduction

In spoken human-computer dialogues, especially mixed-initiative and user-
driven, it is very important that the system can handle certain linguistic phenomena
that frequently occur in spontaneous speech such as filled pauses, hesitation and
correction. Grammar-based models are known to be very restrictive and cannot
adequately deal with the above phenomena. On the other hand, statistical language
models based on n-grams are much more flexible against effects of spontaneous
speech. However, reliable n-gram estimation requires a very large training corpus
and/or sophisticated smoothing techniques. Dialogue systems deal with specific
task-oriented domains, where it is difficult to obtain sufficient data in order to create
robust statistical language models, especially in the first phases of their development
where no information by the use of the system itself is available. Therefore, it seems
appropriate to combine both types of models. Grammar-based models give better
results for grammatically correct utterances whereas stochastic models are much
more robust to spontaneous speech.

A number of researchers have proposed ways to combine linguistic and
stochastic knowledge in the speech recognition process. In some approaches
grammars were used in order to compute n-gram statistics and they were combined
with traditional n-grams elicited from a corpus [JUR 95; ECK 96]. Other attempts
towards this direction, exploited syntactic information in forming grammatical
fragments of various types, and supplanted the standard »-gram with n-grams of
fragment types [MET 93; LLO 95; MOO 95; POP 97; TSU 98; NAS 99]. Link
grammars [FON 95] and syntactic information [PER 96; CHE 99; WU 99] were
used, in an attempt to improve the language model by providing it with long
distance dependencies not captured in the n-gram statistics. Although it is not
connected straightforwardly to our approach, we should state here that high-level
semantic information may also be used to incorporate large-span constraints. Two
approaches in that direction were based on word triggers [LAU 93] and Latent
Semantic Analysis (LSA) [BEL 98].

The naturalness and perceived intelligence of a spoken dialogue interface does
not depend only on its ability to recognise and analyse user utterances correctly but
also on the quality of the Natural Language Generation (NLG) module. NLG has
been extensively studied for “single-interaction” systems, e.g. summarisers,
translators, and report generators, but little is known about effective ways of
performing NLG in dialogue systems [GAL 01]. Current approaches to NLG have
limited success when applied to conversational systems. In dialogue systems the
language use must be extensive and varied [STE 99; GAL 01]. Moreover, the NLG
module has to be robust against missing and incomplete data [KNI 95; GAL 01], a
problem that occurs often in spoken dialogue systems, and it should operate in a
fraction of real time.

The NLG component of most dialogue systems is based on templates. Template-
based systems require little linguistic expertise and are cost-effective solutions to



Stochastic Language Modelling for Recognition and Generation... 3

NLG in the early stages of prototyping. However, templates tend to become
unmanageable as the system grows, since the number of templates needed to cover
all situations while maintaining a reasonable quality can become quite large.
Templates are application specific and have to be entirely rewritten when switching
to a new application domain. Furthermore, the sentences they produce lack the
variability and robustness to missing data, needed by conversational systems, since
they merely rely on slot-filling techniques [GAL 01; RAM 01]. General-purpose
rule-based generation systems [HOV 88; FAW 92; BAT 97] sidestep these
problems, but they tend to be difficult to adapt to task-specific applications due to
their generality, sophistication, and their need for a large amount of linguistic
knowledge [RAM 01]. In addition, typical rule-based generators do not achieve real-
time performance and are unsuitable for dialogue systems [STE 99; OH 00; GAL
01]. Recently, attempts have been made to overcome the problem of both template-
based and rule-based systems by introducing a hybrid approach incorporating both
models [BUS 98; STE 99; AXE 00].

According to [RAM 92; USZ 96; REI 00], NLG consists of 3 layers: (1) Text
Planning, (2) Sentence Planning, and (3) Surface Realisation. Determining the
system’s intent or communicative goal in dialogue systems is out of the scope of the
generator and is usually handled by the dialogue manager. The dialogue structure of
a conversational system may be formed either heuristically or by using statistical
methods [MOO 93; LEV 97; REI 97]. Some approaches towards sentence planning
are described in [GAL 01], [RAM 01] and [WAL 01].

To date, only limited use of statistically derived resources has been made for
surface realisation in NLG. In the current approaches, rule-based systems are
combined with stochastic models, that is a grammar generates possible strings for a
particular semantic input and a statistical language model acts as a filter that prunes
and ranks the alternative strings [KNI 95; LAN 98; BAN 00; GAL 01; HUM 01]. In
[OH 00], a purely stochastic surface realisation is proposed. Moreover, [RAT 00]
introduces trainable methods for surface generation. Nevertheless, research on using
grammars for NLG continues [GAR 01].

In this paper we present a method, which can be used for language modelling
both in the analysis-recognition stage of a dialogue system and in the phase of
generating responses. It should be stated here that our technique deals only with
surface realisation. It is an incremental data-driven process based on the Viterbi
algorithm. It takes as input a set of sentences and produces a HMM or equivalently a
Stochastic Finite-State Network (SFSN), which integrates statistical estimations
with grammatical constraints, thus retaining the advantages of both approaches. The
incorporated grammatical structure allows for large context dependencies to be
considered. That is, the state history varies and is not limited to the value denoted by
the order of the HMM. The output HMM may produce the above set of sentences,
given as input, together with other sentences not appearing in the training data. This
is accomplished both by the creation of word/phrase classes and the stochastic
features of the algorithm. Therefore, the algorithm generalises the sample data,



thereby reducing the required amount of training samples for acquiring reliable
models. Adjustment of parameters may lead to a model where stochastic features
supersede grammatical structure and the contrary. In the first case, the output HMM
can be used as a robust language model in the analysis-recognition stage, and in the
second case as a model for generating valid system responses without the need of
grammars. If we use the resulting HMM in text-based dialogue systems as a
language model for recognition of written input, which usually follows grammatical
structure, then the parameters of the algorithm should be adjusted as in the response
generation case. Nevertheless, the proposed technique is more appropriate for
spoken input and output due to its stochastic nature. If the produced HMM is used as
a language model in the recognition stage, then the input training sentences
represent possible speaker utterances in a dialogue state. On the other hand, in the
NLG process, the set of training data consists of alternative forms of system prompts
for the same dialogue state.

In [GEO 00; GEO 01] we applied our method to language modelling in the
recognition stage of spoken dialogue systems. The current work is an extension of
[GEO 00] and [GEO 01]. In the present paper, we explain our technique in detail,
focussing on key implementation issues, which are not obvious from the general
algorithm description and that were not presented in our previously mentioned
works. Furthermore, our method is compared not only with bigrams but also with
class-based bigrams, and additional results concerning word recognition accuracy
are provided. Finally our algorithm is not only investigated from the perspective of
language modelling in the recognition stage but also as a means to generate
grammatically correct system responses without the need of grammars and with
limited training samples.

The paper is organised as follows: The proposed approach is described in detail
in section 2. Experimental results, both for the recognition and the generation stages,
are given in section 3. Finally, a summary and some conclusions are provided in
section 4.

2. The proposed approach
2.1. Comparison with related work

In the majority of the systems mentioned in section 1 (analysis-recognition
stage), n-grams are derived from grammars, or two separate models, a linguistic and
a stochastic one, are interpolated to form a new language model, and the process of
forming grammatical fragments that will be combined with statistical estimations is
separate from computing the n-grams. Our algorithm incorporates in its structure the
integration of linguistic and stochastic features. That is the resulting model is built in
a straightforward way from the training data and not by the combination of a
grammar-based model and a statistically estimated one. [TSU 98] and [NAS 99]
represented grammatical fragments as Finite-State Automata (FSA). Our approach
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also uses FSA since the resulting HMM is equivalent to a SFSN where the nodes are
the word/phrase classes and the arcs are the state-transitions of the HMM, labelled
with the corresponding transition probabilities. The observation probabilities of the
HMM correspond to the probabilities within the classes (sub-networks) of the
stochastic network. The use of stochastic automata to represent statistical language
models has been recently proposed [RIC 96; MOH 97] with the aim to handle
accurate language models in a one-step decoding procedure. In [RIC 96] a back-off
n-gram language model is represented through a non-deterministic Stochastic Finite-
State Automaton (SFSA), which is called Variable N-gram Stochastic Automaton
(VNSA). In [BOR 97; VAR 99; VAR 00] the use of smoothed K-Testable language
in the Strict Sense (K-TSS) regular grammars allowed obtaining a deterministic
SFSA. K stands for the same meaning as N in N-gram and each state of the
automaton represents a word chain of up to K-/. Our algorithm produces a
deterministic SFSN. According to [HOP 79], non-deterministic are the automata that
allow more than one transition from a state, of the same input symbol. Thus in non-
deterministic automata, for a given string of symbols there are several possible
sequences of states that recognise it. In the SFSNs produced by our method, we
cannot have different state-sequences for the same string of symbols. In VNSA and
K-TSS models, the history size has a value of up to N-/ and K-/ respectively. Our
algorithm is structured in such a way that allows for longer distance dependencies to
be considered, and results in variable history sizes with no specific upper limit. The
upper limit depends on the number of words/phrases of the sentences used as
training data and the way these sentences are associated, and in many cases the
complete history is retained. A large value of history size indicates a high degree of
grammatical structure whereas a lower value entails broader coverage of
ungrammatical spontaneous sentences.

Another main advantage of our technique is that word/phrase classes are created
automatically during the construction of the HMM. In [ECK 96; POP 97] classes are
created manually, in contrast with other existing systems [BRO 92; JAR 93; KNE
93; RIE 96; SMA 96; NAS 99], where automatic techniques are used and the
clustering procedure is independent of the construction of the final models. That is
classes are merged and/or words move from one class to another, and the procedure
iterates until a criterion is optimised e.g. maximum likelihood, perplexity, average
mutual information. Then the language model probabilities are estimated according
to the formed classes. Thus in all the aforementioned cases, the language models
require already formed clusters in order to become more compact and robust. Our
algorithm does not require the preexistence of classes but creates them automatically
and simultaneously with the construction of the HMM. Each word/phrase may
belong to more than one cluster, since it is allowed to have multiple instances of the
same word/phrase in the HMM. The merging operation preserves the ability to
generate all the training data. However, new sentences not included in the training
samples may also be generated, which is considered as generalisation of the sample
data. Moreover, in case we acquire additional sentences, the HMM is not built from
scratch using all the training data (old data together with additional data). That is the



HMM created with the old set of data is used as the initial model in the training
procedure. The new data will be used to update the current HMM iteratively until
the final model is built. Consequently the adaptation of the language model to
additional data in the same domain or to another application becomes much easier
and efficient with low development costs.

As it was mentioned in section 1, most approaches that integrate statistical
knowledge for surface realisation are based on the following framework: they use a
generation-specific grammar and construct a lattice representing all possible strings
that the grammar allows for a particular semantic input. Then, in a separate stage,
statistics are used to rank the alternatives in terms of “fluency”, determined by
similarity to »n-grams in the corpus [KNI 95; LAN 98; GAL 01]. However, these
approaches have some limitations, e.g. their statistical nature may lead to
ungrammatical sentences, lexical co-occurrences etc. In order to deal with such
phenomena [BAN 00] used sub-tree structures, which allow the handling of long
distance dependencies. Moreover, [HUM O01] used a statistical language model
derived from a full grammar to constraint the simplified version of this grammar,
which was responsible for NLG.

By adjusting the appropriate parameters, our algorithm can retain a high level of
grammatical structure and cover large context dependencies. Furthermore, it does
not require the existence of a grammar in order to function. That is, in our case we
do not have a stochastic language model that filters the output of a grammar, but a
model that can be used in a straightforward way to generate the dialogue system’s
responses. Even, if the resulting HMM of our approach is used as a filter for a
grammar, as in the previous works [KNI 95; LAN 98; BAN 00; GAL 01; HUM 01],
it is expected to give better results than n-grams since it incorporates grammatical
knowledge in its structure. Nevertheless, it is preferred to apply the produced HMM
directly to NLG, since this is the basic advantage of our approach in the response
generation case. Again, as in the analysis-recognition stage, the fact that the
algorithm generalises from sample data reduces the amount of training sentences
required for forming reliable models. The use of clusters and the statistical nature of
the algorithm will compensate for missing samples.

The proposed technique has been applied to language modelling both in the
recognition and the generation phases of dialogue systems. However, it could also
be viewed from another perspective that is as a method for inducing the structure of
HMMs from sample observation sequences. The Baum-Welch algorithm, which is
used for training HMMs, assumes that the number of the HMM states is fixed, and
uses initially random parameters that are iteratively updated until a point is found
where the sample likelihood is locally maximal. A more general problem is to
additionally find the best HMM topology, which includes not only estimating the
transition and observation probabilities but also the number of states. The Baum-
Welch algorithm could be used again on fully connected models of varying sizes,
picking the model size and topology with the highest posterior probability.
(Maximum likelihood estimation is not useful for this comparison since larger
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models usually fit data better). However, this approach is very costly and Baum-
Welch may get stuck at sub-optimal local maxima. We handle the structure learning
problem in an incremental way. An initial model is constructed and the model size is
adjusted as new data appears. New observations create new states or merge with
existing ones. Therefore, in every iteration the number of states may increase or
remain unchanged and the HMM probabilities are updated accordingly. Beyond
being incremental, our algorithm is data-driven in that the training data itself
completely determines the initial model shape, in contrast with the Baum-Welch
algorithm where the initial model is completely uninformed by the data. Other
approaches close to ours are the ones described by [THO 86] and [STO 93].
However, these approaches apart from the algorithmic differences they have,
compared to our method, were also applied to different tasks.

2.2. Algorithm description

The flow chart of our method is shown in Figure 1. In this section, we describe
the algorithm concisely and, in the following ones, we explain the steps it consists of
in detail.

<_START >
[ (1) Selection of S ]

‘ (2) Extraction of subset ‘
sentences of S | b

v
Ae’(ﬁ) Creation/update of HMM ‘
¥

\ (4) Definition of T |

additional criteria

(5) Selection of S.
Exists?
Yes
(6) Viterbi (7) Application of
probability

>T

“andidate
(9) assignment
to clusters.
Right?
Yes

“ (10) Update of clusters ‘

Figure 1. The flow chart of the algorithm.

(8) Criteria
fulfilled?

At first a set of sentences is selected to train the initial HMM. For every new
sentence S (preferably the longest, as it will be explained in section 2.4), the Viterbi
algorithm is activated, to check whether this sentence could be extracted by the
current HMM, following one of its paths. The probability assigned to the sentence S
is compared with a threshold 7, which is defined for the HMM. The estimation of 7
will be described in detail in section 2.4. (a): If the probability assigned to S exceeds



or is equal to 7, or if a part of S fits in an existing HMM path, then unknown
observations of S, that is words or phrases, are able to match existing states, i.e.
word or phrase clusters, and become members of them. In this way, the clustering
procedure takes place simultaneously with the construction of the HMM. Taking
into consideration the modified clusters and sentences that are subsets of S, the
HMM is updated. That is, the observation probabilities within the existing states
(clusters) are reestimated and new states may be added (for the parts of sentences
that cannot match existing states). The transition probabilities are also updated.
Subset sentences of S are the sentences, all the words/phrases of which are contained
in sentence S. The word/phrase order may be considered or not be taken into
account. S is included in its subsets. (b): If the probability assigned to S is smaller
than 7 and no parts of S fit in existing HMM paths, the already existing states
(clusters) are not updated, but new ones are created to incorporate the subset
sentences of S into the HMM. In either case (a) or (b), a new threshold for the
updated HMM is estimated and replaces 7. Then a new sentence is selected, the
probability of which is going to be compared with the updated threshold. The
procedure iterates until no more sentences are available.

Throughout the iterations, phrases may be formed (by using simple rules or by
taking into consideration sophisticated syntactic and semantic restrictions), during
each sentence’s processing, that is before Viterbi is applied. In our tests, phrases
were formed by considering words with very strong correlation (e.g. I would like to,
identity card, etc.), that is word tuples, which are strongly recurrent in the language
and can be thought as a single lexical entry. These phrases were manually selected.
The phrase formulation is the only step where language-dependent knowledge is
applied. In order to compare the output of our algorithm with a grammar-based
model represented as a finite-state network, we consider the final HMM as a SFSN
(see section 2.1 for details).

The type of the HMM we use is discrete. If a word/phrase follows another
word/phrase the transition probability a; between their classes that is the HMM
states i and j is greater than zero, otherwise it is equal to zero. In the case where a;; #
0, two types of transition probabilities are considered: transitions with equal
probability from one state to another or probabilities derived from the number of
times a word/phrase class appears after another. To be more precise, if a
word/phrase class u is followed by #» word/phrase classes in the training data, then
the probability that a word/phrase class w occurs after the word/phrase u, in the case
of equal probabilities, would be

Pw|u)y=1/n ()
On the other hand, if the number of times class w follows u is considered, then
Pw | u) = N(u, w)/ N(u) 2)

where N(u, w) is the number of occurrences of class w after class # and N(u) the
number of occurrences of class u.
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In the same way, observations, i.e. words/phrases, can have equal probabilities
within a state (class), or the probabilities are formed according to the frequency of
occurrence of the words/phrases. In the former case if a word/phrase v belongs to a
class C(v), which has » members, then the probability of this word/phrase in the
class is

Pv|Cv)=1/n 3)
In the latter case
P(v [ C(»)=N)/ NC(»)) 4)

where N(v) is the number of occurrences of word/phrase v and N(C(v)) the number
of occurrences of class C(v), that is the sum of the number of occurrences of its
members.

2.3. Training data

A set of sentences is used as input to the algorithm. These sentences can be
derived from simulation experiments (Wizard of Oz). They can also be generated by
the use of the system itself for the analysis-recognition stage. That is, utterances
spoken by users are recorded and transcribed, in order to be used for extending and
improving the current language models. Our algorithm takes the set of sentences for
granted, regardless of whether they are derived from simulation experiments, from
the system itself, from the application grammar, are manually created or are
produced by a combination of these methods. However, as it will be shown in the
tests carried out, the best language model for recognition is obtained, by mixing
sentences taken from the use of the system with grammatically correct sentences. On
the other hand, in the NLG process the best model is the one that is based on
grammatically correct sentences. There is no requirement for a grammar but if a
simple grammar is available it could be used for generating sentences that would be
directed, as input, to our algorithm. This is what we did in section 3 in order to
compare our models with grammar-based ones under exactly the same conditions. In
free phrase-order languages such as Greek, a chunker could be used for the split of
sentences into phrases and their ordering so that more training data is available.

2.4. Initialisation

The initialisation stage includes steps 1 to 4, as depicted in Figure 1. The longest
sentence S is selected, that is the one with the biggest number of words/phrases (step
1), which will be used together with its subset sentences to train the initial HMM. As
it has already been mentioned, subset sentences of S are the sentences, all the
words/phrases of which are contained in sentence S. There are two cases: in the first
case where the word/phrase order is retained (WPO — Word/Phrase Order), if S is
the sequence of words v; v, v, ..., v, then a subset sentence of S could have the



10

form v, vj, Vi, ..., vy 1 <i<j<k <. <m<n Inthe second case where the
word/phrase order does not pose a constraint (NWPO — No Word/Phrase Order), the
subset sentences of S have the form v;, v;, vi, ..., v [ <i,j, b, m <n. If Sl is a
candidate sentence to be included in the subset sentences of S, and if a word/phrase
appears » times in S and m times in S/, then a restriction that applies to both cases
(WPO and NWPO) is that m < n (step 2). By using the longest sentence, we ensure
that more sentences become subset sentences directly without applying Viterbi.
Thus the total computation time for the construction of the final HMM is reduced
significantly, especially when much training data is involved. The gain is higher in
the WPO case because in every iteration fewer sentences are selected as subset
sentences of S due to the word/phrase order constraint and therefore more iterations
are required. Nevertheless, the computational cost is not so important since the
procedure is offline. That is the HMMs are not created online during the recognition
and generation stages.

The number of states N, in the initial HMM, is equal to the number of
words/phrases of S. The number of observations M is equal to N+/. The redundant
observation stands for any unknown word/phrase. Transition and observation
probabilities are estimated using equations (1) to (4). The observation of the
unknown word/phrase has a probability of 0.000001 in all states. The reason that
0.000001 is used instead of 0 is to avoid overflows in computations. The initial state
probability 7; is / only when i is the enfer state and 0 for all other states (step 3).

After the initial HMM has been built, our next step is the definition of 4 decision
thresholds that will be used to decide if a new sentence will fit in an existing path or
create a path of its own (step 4). The 4 thresholds correspond to the occurrence of 0,
1, 2 and 3 unknown words/phrases respectively. Only 4 thresholds are considered
because if a new sentence has more than 3 unknown words/phrases it is more likely
that it will fail to follow an existing path. The procedure for the thresholds’
definition is as follows: The Viterbi algorithm finds the optimal state sequence that
produces the longest sentence S, and the resulting probability is considered as the
first threshold. One of the observations in the above sequence is replaced by the
unknown word/phrase observation e.g. if v is the unknown observation and v, ..., v;.
> Vis Vsl --.» Yy, 1S the observation sequence, the new sequence will become v, ..., v;.
5 VY, Vieg, ..., vy Where [ < i < n-2 and the Viterbi algorithm will give the second
threshold. By replacing two or three observations with the unknown word/phrase
observation, the third and fourth thresholds are defined: v,, ..., vi;, v, v, visa, ..., v, (if
i=mn-2then v, =v,) and v;, ..., vis, v, V, V, Viz3, ..., v, (if i = n-2 then the 3rd
unknown observation v will be v,,). We usually select i = n-4 unless n < 4 where i is
remodified so that most of the sentences and therefore thresholds can be defined. If
n < 3 then some thresholds are not considered. However, in practice this does not
happen, since there are always training sentences with more words/phrases. Some
preliminary experiments have shown that the value of i has no significant effect on
the resulting network. We intend to carry out further tests with different values of 7,
and watch how thresholds are affected.
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2.5. Iterative procedure

This stage includes steps 2 to 10, as depicted in Figure 1. The longest sentence S
of the remaining sentences is selected and transformed into an observation sequence
(step 5). The Viterbi algorithm finds the optimal state sequence with the
corresponding probability. According to the number of unknown observations the
above probability is compared with one of the 4 thresholds (step 6). If it exceeds or
it is equal to the appropriate threshold 7" (Case 1), then a new observation can match
one of the existing states (classes), and become a member of this class (move to step
9). In cases where the threshold 7 is not exceeded and only a part and not the whole
sentence matches an existing path straightforwardly or by shift (Case 2), the
candidate matches between new observations and existing states, may be accepted
according to some criteria (step 7). These criteria are position, number of words,
word order, if a word/phrase sequence appears more than once in the path etc. If
these criteria are very strict, then it is more likely that these candidate matches will
be rejected, which will result in a model where grammatical structure supersedes
stochastic features. On the other hand, loose criteria will allow matches that do not
conform to grammatical rules and may also cause insertions of loops. That is the
resulting model will come closer to the n-gram structure. In order to find the
candidate matches, the observation and state sequences (derived from the Viterbi
algorithm) must be compared. It should be noted here that if we want to compare
similar things, we must replace observations with the states (classes) where they
belong and then compare this state sequence with the state sequence extracted by
Viterbi.

If the conditions of steps 6 or 8 are satisfied, we move to step 9 to ensure that an
observation will not match a class by mistake. The algorithm gets all the subset
sentences of S, which contain this observation and computes their probabilities using
Viterbi. Therefore step 9 also includes the extraction of subset sentences of S,
although this is not depicted in Figure 1, because it would complicate the flow chart.
If the unknown observation matches the same state in the greatest portion of the
subset sentences of S, which contain this observation, e.g. more than 70% (in Case
1), it is considered that the observation can become a member of the class and the
cluster is updated accordingly (step 10). The percentage is set higher (e.g. 75%) in
Case 2 (from step 8), because the criterion should be stricter since the threshold 7 is
not exceeded. In order to check if the above percentages are exceeded, the
observation and state sequences (derived from the Viterbi algorithm) are compared.
Again the observations must be replaced by the states (classes) where they belong
and then compared with the state sequence extracted by Viterbi. The above
percentages are set empirically and the definition of their values is still research in
progress. Higher values lead to very strict clusters and more states, while lower ones
are responsible for loose clusters and fewer states. From step 10 the procedure
continues as follows: All the sentences that have been used so far together with the
new sentence S (which caused the match) and the subset sentences of S form a set
for estimating the new HMM parameters (step 3). The number of states remains the
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same if all the unknown words/phrases of S are clustered to existing states, or one
state is added for every unknown word/phrase that cannot match an existing state.
The number of unknown words/phrases is added to the previous number of
observations to give the current number of observations in the HMM. Transition and
observation probabilities are reestimated according to equations (1) to (4) taking into
account the new data and clusters. On the other hand, if neither of cases 1 or 2 has
taken place (conditions of steps 6 and 8§ are not satisfied) then the algorithm moves
to step 2. If no unknown word/phrase matches an existing state for e.g. more than
70% or 75% of the sentences (condition of step 9 is not satisfied) then the procedure
moves to step 3 because the subset sentences of S have already been extracted in
step 9. From step 2, S with its subset sentences is used for updating the HMM
parameters (step 3). The unknown words/phrases are considered as new states of the
HMM. After the new HMM has been constructed, the thresholds are updated (step
4), the longest of the remaining sentences is selected (step 5), and the steps
described above are repeated. The procedure stops when there are no other training
sentences (condition of step 5 is not satisfied).

In the sentences used for training, we always add the observations enter and exit
as first and last words/phrases respectively so that the resulting network has only
one entrance and one exit states. From now on when we give a sequence of
words/phrases that forms a sentence, the first and last observations (enter, exif) will
be omitted, that is if the sentence is enter, v;, v,, ..., v,, exit it will be denoted as v;,
Vv, ..., Vu. To be more analytical let us have some examples, which explain how the
algorithm works in the most common cases and where we can see how the criteria of
position, number of words, word order and multiple appearance of a word/phrase
apply. Suppose that we have the sentences v, vy, ..., Vi, Vis, Vi (SI), Viopy Vs Vi, V3,
s Vo (82) and v,..5, Vpig, Vi, Vo, .oy Yz (S3). All the sentences have the same
number of words/phrases. We select S/ to train the initial HMM since it is the first
one in order. In the WPO case S2 will not comprise a subset sentence of S/,
therefore Viterbi will be activated. The path v,, v,, ..., v, is common for both S/
and S2. However, if we add new states only for v,.,, v,, the resulting network for S/
and S2 is the one depicted in Figure 2a. The observation sequence v, ;, v, appears
twice in the same path, which is not allowed. The network of Figure 2a would be
correct if S2 had the form v, ;, v,.;, v;, Vs, ..., v,z Or equivalently if we only had
sentences S/ and S3 since in this case the path v,_;, v,,.;, would be different from v, ;,
v,. However, now that we have similar paths new states will be added for all the
observations of S2 v,.;, v,,, v;, Vs, ..., V2. In the next iteration, where S3 will also be
considered, v,.; will match v, (Figure 2b). In the NWPO case S/ and S2 will be used
to train the initial HMM and when Viterbi is activated for S3, v,.; will match v,
(Figure 2c). In order for v, and v,.; to become members of the same cluster, this
match should appear in more than 70% of the available sentences. Figure 2¢ shows
that NWPO introduces loops and increases perplexity but also leads to the
construction of more compact networks and to the prediction of more sentences
(generalisation), which is very important especially when the training data is limited.
E.g. the network of Figure 2¢ produces the observation sequence v;, vy, ..., V.2, Vir,
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\z }—»‘ v, }_.4 Vi an.l H Vo

Figure 2. Example explaining the formulation of classes and how the criteria of
word order and multiple appearance of a word/phrase apply.

V-1, Which is not included in the training sentences. However, if the classes formed
are not correct, the error in NWPO will be greater since more paths are involved. In
section 3 results are given from experiments carried out with both WPO and NWPO
cases. In Figure 2b the complete history is retained whereas in Figure 2c it is not,
due to the introduction of loops.

Let us have a more general example now. Suppose that we have the existing
HMM vpath v;, ..., Vi), Vi, Vies, .., v (ST) and sentence Vi, ..., Vis, ¥, Visp, «.ns Visp
(S2) where i-m > I and i+p < n. Then S2 will be considered to fit in S/ and v will
match with v; if [(m > 2 or p > 2) and (m # 1) and (p # I)]. At first we considered 3
neighbour observations instead of 2 but this resulted in failing to match relevant
words/phrases. In the same way, if we had sentences Vi, ..., Vi, v, V, ..., Viepes (2
unknown observations), Vim, ..., Vi, V, V, ¥, ..., Vispe2 (3 unknown observations),
these sentences would match with S/ if the previous condition (for 1 unknown
observation) is satisfied. Note that the symbol v stands for any unknown
observation, which means that 2 or 3 subsequent v do not correspond to 2 or 3
identical words/phrases. If the unknown observations are on the left edge of the
sentence v, ..., Vi, (1 unknown observation), v, v, ..., Vi (2 unknown
observations), and v, v, v, ..., Visn+2 (3 unknown observations), then it should be m >
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3. Here the constraint is stricter since we have neighbour observations only towards
one direction. Finally if the unknown observations are on the right edge of the
sentence Vi, ..., v (1 unknown observation), vi,.;, ..., v, v (2 unknown
observations), and v;.,.2, ..., v, v, v (3 unknown observations), then the constraint
should also be stricter, that is m > 3.

2.6. Additional features

Some additional criteria may also be added so that clusters are correctly formed,
e.g. words could be divided in functional and non-functional words or their Part-Of-
Speech (POS) could be considered. Thus a functional word cannot be clustered with
a non-functional one and words that do not have the same POS cannot belong to the
same class. In the same way phrases of different types may not be allowed to be in
the same cluster even if all the other criteria are met. If used, the above criteria can
be considered as language-dependent features of the algorithm. These additional
constraints (apart from POS) have been taken into account in tests and have resulted
in improved performance. Nevertheless, the clusters that the algorithm produces are
correctly formed even if these criteria are not considered.

In case we have created our model and new data appears, the HMM is not built
from scratch using all the training data (old together with new set of sentences). That
is the HMM created with the old set of sentences is used as the initial model in the
training procedure. The new data will be used to update this model. In the general
case the updated model will not be exactly the same as the model derived from using
all the data (old and new). The structure of the two HMMs could be a little different
since the final model depends on the available data and their order in the training set.
Therefore in the updated model some words/phrases may have not been clustered
because the data would not have exceeded the 70% or 75% thresholds. On the other
hand, if all the data is used from the beginning, the probability that correct clusters
are formed is greater. Thus a model derived from using all the available data is
supposed to perform better than the one built in more steps, with 2 or more sets of
sentences. However, this is not always the case and depends on the specific data set.

3. Evaluation
3.1. Analysis-recognition stage

In order to test our algorithm we used data from 3 different spoken language
systems: ACCeSS (a system for automating the call center services of a car
insurance company, EU project LE-11802), IDAS (an Interactive telephone-based
Directory Assistance Services system, EU project LE-48315), and a call-routing
spoken dialogue system developed by the Greek company Knowledge S.A. We used
data from 38 dialogue states of ACCeSS, 7 of IDAS and 4 of the call-routing
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system, 49 in total.

Three sets of experiments were carried out. In the first one (Test 1), we consider
as training data for our algorithm, the sentences derived from the grammars of the 3
applications. In the second one (Test 2), the training data is derived from the use of
the system itself. Finally, in the third experiment (Test 3), the training sentences are
data derived from grammars mixed with sentences derived from the use of the
system. The total size of the corpora used was 12.3 Mbytes. The number of
sentences derived from the grammars varied from 122 to 42609, according to the
dialogue state, with an average value of 2642.79. The number of sentences derived
from the use of the system varied from 390 to 4165, according to the dialogue state,
with an average value of 1834.48. The size of the vocabulary was between 21 and
145 words, again according to the dialogue state, with an average value of 42.79.
This high variance in the number of sentences and vocabulary size arises from the
fact that the 49 networks are not equivalent in structure. A high number of sentences
and/or vocabulary size for a dialogue state does not necessarily entail a high
complexity. That is, there could be more difficulties in forming correct clusters and
networks in a dialogue state with limited number of sentences and vocabulary size
than in another state where the number of sentences and words is high.

We carried out experiments with word/phrase classes for both WPO and NWPO.
Two types of probability estimations were considered. In the former case, which we
will call E1, equations (1) and (3) were used to compute the transition and within
class probabilities respectively. In the latter case (E2), we applied equations (2) and
(4). As it was mentioned in section 2.2, phrases were manually selected. When we
extracted the phrases for our training set, we modified the word-based grammar
networks to take the phrases into account so that we have phrase-based grammar
networks too.

The precision and recall parameters comprise a valid metric for evaluating the
performance of our algorithm regarding the formed clusters. We define as C the
number of correct matches between words or phrases, formed by our method, 7 the
total number of matches formed by using our algorithm, and O the total number of
correct matches, which can be derived from the training data. Then:

Precision=C/T and Recall=C/ 0O

Let us take an example: if we have words speak, talk, communicate and contact,
which must be members of the same cluster, then the correct matches we expect to
get are speak-talk, speak-communicate and speak-contact. If our algorithm forms
matches speak-talk, speak-communicate, speak-initiate and speak-listen then T=4,
C=2 (speak-talk speak-communicate) and O=3 (speak-talk, speak-communicate,
speak-contact). Thus the precision is 0.5 and the recall is 0.66. If we considered
clusters instead of matches then we would have C=0 since the cluster formed by our
algorithm (speak, talk, communicate, initiate, listen) is not correct, 7=1 since we
have one cluster and O=1, which is (speak, talk, communicate, contact). Thus both
the precision and recall would be 0 although some matches formed by the algorithm
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are correct. Therefore a definition of precision and recall based on full clusters, as a
metric for the algorithm’s correctness, would be misleading. We should also state
here that we took clusters such as names, car models, cities etc., for granted. That is
we were interested only in forming clusters of relevant words/phrases, e.g. want,
need, desire etc., since this is the most difficult and useful case. Classes of names,
cities etc. do not need such algorithms to be created. They are already formed in
databases. It is very crucial that the precision is high so that no ill-formed clusters
are created since this would result in associating irrelevant words/phrases and in the
end in increasing perplexity. Thus very strong thresholds are set to ensure that only
correct clusters are created.

Test 1 Test 2 Test 3
WPO | NWPO WPO NWPO WPO NWPO
Precision
W-El 0.97 0.96 0.93 0.93 0.96 0.96
W-E2 0.98 0.97 0.94 0.93 0.97 0.96
P-El 0.97 0.97 0.94 0.94 0.97 0.95
P-E2 0.98 0.97 0.95 0.95 0.97 0.96
Recall
W-EI 0.77 0.78 0.74 0.75 0.76 0.76
W-E2 0.77 0.77 0.74 0.74 0.75 0.75
P-El 0.77 0.79 0.75 0.75 0.76 0.76
P-E2 0.76 0.78 0.73 0.74 0.75 0.76

Table 1. Precision and recall values for the formed classes.

Test 1 aims at comparing grammar-based networks with our models under the
same conditions that is with exactly the same training data. That is, we use as input
to the algorithm the sentences, which are derived from the grammar-based networks.
The appropriate grammar is loaded according to the dialogue system and the
dialogue state. Thus the output of our algorithm is compared with the grammar-
based network in each one of the 49 dialogue states.

In Table 1, the precision and recall values are depicted. Computing the average is
not a very accurate metric in our case since as it has already been mentioned the 49
networks are not equivalent in structure. However, it is indicative of the efficiency
of our method. Sometimes an E1 network can have different precision and recall
from the corresponding E2 network. We have observed that often the E2 networks
have higher precision but lower recall than the El ones. That is they are more
reliable in forming correct clusters but on the other hand as their probabilities are
based on the exact number of occurrences, sometimes they fail to match
words/phrases, which are strongly correlated but that do not have equivalent
occurrences. In the same way, in the WPO case, the precision is higher since the
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word/phrase order is taken into consideration in forming clusters. However networks
derived from the NWPO case tend to have higher recall values. Moreover, phrase-
based (P) networks generally outperform word-based (W) ones because the use of
phrases allows for matches between expressions with the same meaning that would
not take place if their constituent words were considered.

The language model can be evaluated through its perplexity on test data, which
is given by the following equation:

PP =[Pr(v;.. v)]"™

which is equal to

N
PP = exp( —%Z log Pr(v, |v,..v,,))

n=1

The grammar-based networks we use are deterministic. The same applies for the
models derived from our algorithm (see section 2.1 for details), and bigrams. Thus
following the paths will not lead to an ambiguous node selection. Table 2 depicts the
average increase (%) in perplexity of our models compared to the grammar-based
ones and the average reduction (%) compared to bigrams and class-based bigrams.
We have formed class-based bigrams using the clustering algorithm proposed by
[KNE 93]. Perplexity in the grammar-based networks is smaller than in the ones
derived from our algorithm. This is because the grammar-based networks fit data
exactly. However, they do not generalise, and therefore they are not robust against
utterances not included in the training data. According to the experiments, E2
networks have lower perplexity than E1 ones. Networks of WPO case have lower
perplexity values than the ones of NWPO case and phrase-based networks have
generally lower perplexity than word-based ones. The average perplexity reduction
(%) of our models compared to bigrams is greater than the one we get by comparing
our networks against class-based bigrams.

Test 1

Perplexity Increase Perplexity Reduction Perplexity Reduction

vs. grammars (%) vs. bigrams (%) vs. class-bigrams (%)

WPO NWPO WPO NWPO WPO NWPO
W-El 7.34 8.57 17.18 16.07 11.77 10.59
W-E2 7.22 8.25 17.29 16.36 11.88 10.90
P-El 6.89 8.18 17.86 16.70 12.83 11.60
P-E2 6.81 7.92 17.93 16.94 12.91 11.85

Table 2. The perplexity (%) in the networks derived firom our algorithm compared
to grammar-based ones, bigrams and class-based bigrams (Test 1).
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In Test 2, we consider as training sentences data derived from the use of the
system itself, to compare our models with bigrams and class-based bigrams. The
reason is that the power of bigrams and class-based bigrams arises from the fact that
they give reliable estimations when trained with real data. Thus it would not be
reasonable to compare our models with bigrams and class-based bigrams using
sentences derived only from grammars. Data is split in two parts (80% for training,
20% for testing) so that perplexity is computed by using a test set different from the
training set. In our networks, bigrams and class-based bigrams, all based on phrases,
the sentences used for testing will first be split into phrases and then perplexity will
be estimated. Since the test data may contain events not seen in the training
sentences, smoothing techniques should be applied. We use the Witten-Bell
discounting scheme [WIT 91; PLA 93] because according to [VAR 99], it was
experimentally compared to other classical methods leading to a significant decrease
in test-set perplexity. We consider only the occurrences of the specific node and not
of the word or phrase associated with it, because the same word/phrase may appear
in more than one nodes. For events that have been seen the conditional probability
P(v | x) of observation v in the context x is:

c
P(v|x)= —2F
n,+r,

x

where ¢, is the number of times word/phrase v occurred in context x, », is the total
number of occurrences of words/phrases in that context

n-‘f = z CVi\x
Vi

and r, is the number of different words that occurred in context x. The probability of
a previously unseen word/phrase o occurring in that context x is given by:
r

P(o|x)= ———
n,+r

X X

Table 3 shows the average perplexity reduction in our models compared to
bigrams and class-based bigrams. The perplexity reduction vs. bigrams and class-
based bigrams is a little higher in Test 1 compared to Test 2. A reasonable
explanation would be that the performance of bigrams and class-based bigrams is
better in Test 2 since the training sentences are real data derived from the use of the
system itself and not by a grammar. The average precision and recall values for the
formed matches are shown in Table 1. There is a reduction compared to the values
of Test 1 caused by the spontaneous nature of the training data in Test 2, which
complicates clustering.

In Test 3, we consider as training sentences data derived from grammars mixed
with sentences derived from the use of the system. Table 4 shows the perplexity
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Test 2

Perplexity Reduction Perplexity Reduction

vs. bigrams (%) vs. class-bigrams (%)

WPO NWPO WPO NWPO
W-El 15.28 13.39 9.61 7.59
W-E2 15.42 13.63 9.76 7.84
P-El 15.55 14.18 9.88 8.41
P-E2 15.69 14.22 10.03 8.46

Table 3. The average perplexity reduction (%) in the networks derived from our
algorithm compared to bigrams and class-based bigrams (Test 2).

Test 3

Perplexity Reduction Perplexity Reduction

vs. bigrams (%) vs. class-bigrams (%)

WPO NWPO WPO NWPO
W-El 15.71 14.20 10.46 8.85
W-E2 15.85 14.44 10.61 9.11
P-El 16.02 14.57 10.76 9.22
P-E2 16.15 1491 10.90 9.58

Table 4. The average perplexity reduction (%) in the networks derived from our
algorithm compared to bigrams and class-based bigrams (Test 3).

reduction. The perplexity reduction is lower compared to the values of Test 1 but
higher compared to Test 2. Again smoothing is applied. Table 1 depicts the average
precision and recall values for the formed clusters. There is a reduction compared to
the values of Test 1 but an increase compared to Test 2 since sentences derived from
grammars are included in the training data.

According to the tests, the best language model for the recognition stage is
derived from mixing grammatically correct and spontaneous sentences (Test 3). In
this case phrase-based networks (WPO-E2) give the lowest perplexity values.
Actually the perplexity reduction compared to bigrams and class-based bigrams is
greater in Test I, but in this case the output models would not be robust to
spontaneous speech since they are trained only with grammatically correct data.

In order to investigate how the networks produced by our algorithm affect
recognition performance, tests were carried out, with data from the call-routing
dialogue system. We used 1200 recordings spoken by real users, corresponding to
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the system prompt “Who would you like to speak with?”. The speech recogniser we
used was built with the HTK Hidden Markov Models toolkit. In order to train the
recogniser we used the SpeechDat-I1 Greek telephone database.

In Table 5, we can see the recognition accuracy for the grammar-based (G)
networks, the ones derived from our algorithm, bigrams (2g) and class-based
bigrams (CI2g). In each cell, the first number shows the % word accuracy and the
second the % keyword accuracy. The % word accuracy is given by the following
equation:

% Word  Accuracy = A/_D[v#x 100% 5)
where N is the total numbers of words in the reference transcriptions, D stands for
the number of deletions, S for the number of substitutions and / for the number of
insertions. The keyword accuracy is the percentage of the sentences where the
keyword (name) was recognised correctly. In this dialogue state we have only one
keyword. However, there are other dialogue nodes with multiple keywords.

Word/Keyword Recognition Accuracy (%)
Test 1 Test 2 | Test 3

W-G 40.35/75.50
P-G 40.59/75.67
WPO NWPO WPO NWPO WPO NWPO

W-E1 | 49.02/78.75 | 52.48/79.33 | 48.22/78.00 | 51.36/78.33 | 52.75/79.58 | 54.03/80.08
W-E2 | 51.17/79.17 | 53.21/79.67 | 49.55/78.42 | 52.11/78.92 | 53.80/79.92 | 55.29/80.75
P-El 49.28/79.00 | 52.84/79.58 | 48.10/78.08 | 52.43/78.42 | 52.91/79.42 | 56.33/80.17
P-E2 51.61/79.33 | 54.09/79.91 | 50.46/78.67 | 53.67/79.33 | 54.10/80.42 | 57.64/81.08

wlg 45.20/75.25 44.85/76.42 46.31/77.00
P2g 46.18/75.33 45.18/76.67 46.88/77.25
WCli2g 51.13/77.67 50.32/78.42 53.88/79.92
PCl2g 52.28/77.50 50.69/78.33 54.05/80.00

Table 5. Word/keyword recognition accuracy (%,).

The networks derived from our algorithm give the best recognition rates due to
the fact that they retain the predictability of the grammar-based networks and at the
same time they are more robust to spontaneous speech. The NWPO case gives the
best recognition accuracy. Therefore the NWPO models are more robust to
spontaneous speech since their stochastic features supersede their grammatical
structure, as opposed to the WPO case. The columns correspond to the three
methods of building the models according to the training data. This of course does
not apply to grammar-based networks and that is why they have the same accuracy
in all tests. If the best percentages of grammar-based networks, our models, bigrams
and class-based bigrams are considered, the word recognition accuracy improvement
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for our models compared to grammar-based networks, bigrams and class-based
bigrams is 17.05%, 10.76% and 3.59% respectively. In the same way, the gain in
keyword recognition performance is 5.41% compared to grammar-based networks,
3.83% compared to bigrams and 1.08% compared to class-based bigrams.

3.2. Generation stage

Evaluating a NLG system is, unfortunately, a difficult task because it is hard to
appraise qualitative aspects [GAL 01; HUM O01]. The evaluation of the NLG
component in a spoken dialogue system is even more problematic, since it is hard to
separate it from other components of the system, especially the text-to-speech
engine [OH 00; GAL 01]. Since there is no reference data, we cannot use the
Generation String Accuracy (GSA) metric proposed by [BAN 00], which measures
the correspondence between the actual models and the desired/target models. GSA is
similar to the standard accuracy shown in equation (5). The difference is that it treats
the deletion of a token at one location in the string, and the insertion of the same
token at another location in the string, as one single movement error. Nevertheless,
the results we got from the analysis-recognition stage evaluation could give us some
insight about the potential of our method in generating valid system responses.

As in the recognition stage, it is very crucial that the precision is high so that no
ill-formed clusters are created, which will result in generating ungrammatical
responses. Table 1 shows that E2 networks always have higher precision than E1l
ones, the WPO case gives higher precision values than the NWPO case, and phrase-
based (P) networks generally outperform word-based (W) ones. Moreover, the
networks trained with grammatically correct sentences (Test 1) have the highest
precision values. In the same way, if we compare tables 2, 3 and 4, we will find that
E2 networks (WPO case), especially phrase-based (P) ones, in Test 1, have the
lowest perplexity, which entails that their grammatical structure supersedes their
stochastic features.

From the above, it is concluded that, in the NLG process, a phrase-based
network (WPO-E2), trained with grammatically correct sentences (Test 1), is
expected to give the best results. To prove this point, we carried out a simple test for
the dialogue state of identity card numbers. We extracted all the sentences from the
phrase-based grammar network that we had for this particular dialogue state. The
grammatically correct sentences were 202 in total, and they were directed as input to
our algorithm (WPO-E2). The identity card number was treated as a single word that
is we did not take into account different sequences of letters and numbers, which
would result in too many sentences. The produced HMM was ready from Test 1 in
section 3.1. Then we extracted all the possible outputs of our model. They were 267
sentences in total, 202 from the training data and 65 new sentences produced due to
the generalisation effect. The 65 new sentences were checked manually to see
whether they were grammatically correct or not. The result was that 47 of them were
valid sentences. Therefore the proportion (%) of the correct sentences to the total
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number of sentences, generated by our algorithm, is (202 + 47) * 100 / (202 + 65) =
93.25 %, and the percentage (%) of the correct new sentences to the total new
sentences derived from our model, is 47 * 100 / 65 = 72.30 %. Although the
precision value is high (0.98), which means that most of the clusters are correctly
formed, the percentage of the new correct sentences to the total new sentences is
quite lower (72.30%) because an ill-formed cluster is not the only source of errors.
Matches may be correct but result in, e.g. associating words with inappropriate
prepositions, and thus produce grammatically wrong sentences. The test carried out
for this particular node gave promising results but it could not be performed for all
the dialogue states, due to the enormous manual effort that would be required for
checking the sentences. Therefore for more extensive results we will have to wait
until the algorithm is implemented on a real system. So far, our algorithm has been
incorporated in the recognition module of our dialogue systems. We intend to
incorporate it in the NLG module as well, so that we test its efficiency, as far as
NLG is concerned, on real conditions.

5. Conclusions

In this paper, we presented a method for creating SFSNs for language modelling
both in the recognition and the generation stages of dialogue systems. Word/phrase
classes are created automatically during the construction of a HMM. The resulting
HMM incorporates linguistic knowledge, and information provided by statistical
estimations, and allows for variable history sizes with no specific upper limit.
Adjustment of parameters may lead to a model where stochastic features supersede
grammatical structure (recognition stage) and the contrary (generation stage). Our
method was tested using data from 3 different spoken dialogue systems. The tests
carried out, proved the efficiency of our algorithm regarding precision and recall
values for the formed clusters, perplexity, and recognition performance. Moreover,
the above values of precision and perplexity make our models promising for the task
of generating valid responses without the need of grammars.

Future work will focus on exploring the amount of data necessary for
constructing efficient networks. For example, a matter that should be investigated is
the analogy of sentences derived from grammars to real data, so that the best
networks are produced. Moreover, enhanced smoothing techniques will be
investigated, e.g. the delimited smoothing technique [VAR 00].
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