Improved Large Vocabulary Speech Recognition Using
Lexical Rules

K Georgilaj, A T sopanoglouz, N. Fakotakisj, G. Kokkinakis'

(1) Wire Communications Lab.
University of Patras, 265 00 Patras, Greece
Tel.: +3061 991722 Fax.: +30 61 991855

{rgeorgil, fakotaki, gkokkin}@wcl.ee.upatras.gr

SUMMARY

Some applications of speech recognition, such as
automatic directory information services, require very
large vocabularies, e.g. surnames, first names, city names
etc. In this paper, we focus on the task of recognizing
surnames in an Interactive telephone-based Directory
Assistance Services system', which supersedes other
large vocabulary applications in terms of complexity and
vocabulary size. We aim at refining the N-best
hypotheses’ list provided by a speech recognizer by
applying lexical rules. Thus a small value of N produces
multiple solutions and therefore it becomes sufficient to
retain high accuracy and at the same time achieve real-
time response. Experimental results have proved the
efficiency of the approach. By applying the rules, the
accuracy of the speech recognizer has risen from 71.08%
to 87.83% for N=5, a value that also ensures that we
have fast performance in both cases.

KEYWORDS : Large vocabulary, name recognition,
lexical rules, N-best hypotheses.

INTRODUCTION

In several applications such as automatic directory
information services, a speech recognizer is expected to
be able to handle very large vocabularies. In this paper,
we focus on the task of recognizing surnames of a public
directory since it supersedes other large vocabulary
applications in terms of complexity and vocabulary size.
However, the proposed method can be applied to every
kind of large vocabulary.

In order to stress the importance of the problem and
show its connection to real-world applications, we
provide some examples of existing automatic directory
information systems and we examine how each one
addresses the problem. The Philips Automatic Directory
Information System [3], handles the directory of the city
of Aachen, Germany, and vicinity. Its 131,001 listings
include 38,608 distinct surnames. In the first turn, the
user is asked to spell out the desired surname. At that
time, the search space consists of the full database, but
the recognizer is limited to spelling and the number of

'The EU Project LE-48315, IDAS.

(2) Knowledge S.A., LogicDIS Group
N.E.O. Patron-Athinon 37, 264 41, Patras, Greece
Tel. +30 61 452820 Fax. +30 61 453819
atsopano@knowledge.gr

possible surnames extracted is usually significantly less
than 100. In the subsequent dialogue turns, the user is
asked to utter the surname, the first name, and finally the
street name, one after the other. The search space is
reduced with every dialogue turn.

In the British Telecom Automatic Directory Assistance
Service [4] the dialogue model is somehow different.
The caller is asked to give the town and the road name
first. Then the system prompts the user to utter the
desired surname and its spelling. During the development
of their system, British Telecom experimented with all
sorts of dependencies and reached the conclusion that if
recognitions stay independent of each other and the N-
best lists are intersected with the database, confidence
increases while accuracy drops. On the other hand, if
successive recognitions are constrained by previous ones,
accuracy gets higher and confidence decreases.

If there was no dialogue turn for spelling in the
aforementioned systems and the caller was prompted
directly to utter the surname first, the value of N in the
N-best hypotheses’ list of the speech recognizer would
have to be high. This would ensure that the correct
surname (the one uttered by the user) is included. There
are many acoustically similar surnames, and if N is small
it is very likely that the correct surname does not appear
in the list because the N positions of the list are all
occupied by surnames acoustically similar to the correct
surname. However, a very high value of N would slow
down the system’s response. In this paper, we present a
method to avoid using spelling and at the same time
retain high performance with a low value of N.

In our application, the European Project IDAS [1], the
recognizer must distinguish between 257,198 distinct
surnames that correspond to 5,303,441 entries in the
directory of the Greek Organization of
Telecommunications. By restricting the search space to
the most frequent 88,000 ones that correspond to about
123,000 distinct pronunciations, 93.57% of the
directory’s listings is covered. Each dialogue turn is
independent of the previous ones. Therefore the search
space is not reduced with every dialogue turn. First the
user is asked to utter the town. Then the caller is

prompted to fully utter the surname and give its first
letter. In Greek, spelling is not usual (splitting the word
in syllables is preferred), and thus it is not used in the
dialogue system. The speech recognizer searches among
all the distinct pronunciations of surnames, which start
with the letter given by the user, producing the N-best
hypotheses as output. Then the phonetic transcription of
the surnames is transformed to the graphemic one. Note
that a single phonetic transcription could lead to multiple
graphemic ones. The above transformation is done
automatically since both the phonetic and graphemic
transcriptions of a surname are stored in the lexical
database. Otherwise a phoneme-to-grapheme converter
would be used. After the phonetic transcription of the
surname has been transformed to the corresponding
graphemic one, lexical rules are applied, which define
classes of letters and letter combinations, the members of
which can be falsely recognized in a specific context.
That is a letter or letter combination of a class could be
mistaken for another letter or letter combination of the
same class in a specific context defined by the rule. The
solutions created by applying the lexical rules are
surnames acoustically similar to the N-best hypotheses
produced by the speech recognizer. The rules are
language dependent and they are carefully selected so
that they cover the most probable interchanges between
letters or letter combinations, but without leading to too
many solutions.

A similar approach has been applied to letter recognition
in [2]. The spoken letters processed by a free letter
recognizer generate a list of N-best hypotheses. Each
hypothesis is converted to a sequence of letter classes
that are used to search a tree. That is, acoustically similar
letters have been grouped to form a letter class and each
letter has been replaced by the name of the class where it
belongs. Starting at the root of the tree, the class
sequence specifies a path to a leaf that contains names
similar to the input letter hypotheses. The concatenation
of names across all N-best leaves provides a short list of
candidates that can be searched in more detail in the
rescoring stage using either letter alignment or an
acoustic search using a tightly constrained grammar.

The paper is organized as follows: The structure of the
rules is described in the following section. Then the
algorithm, which processes the above rules is explained
and results of performed experiments are provided.
Finally, some conclusions are given in the final section.

RULES’ STRUCTURE
The structure of the rules is as follows:

L,L,... L, S;R;, Ry ... Ry,

where L; i=1, ... k is the left context of the rule, S is the
class, which includes letters or letter combinations that

could be interchanged, and R, p=l...n is the right
context of the rule. The values of k and n could vary
according to the language and the way the designer of the
rules has decided to form them. Each L; or R, is a class
of letters or letter combinations that could substitute one
another as context of the central part of the rule S. In our
experiments we have selected k=1 and n=3, which means
that we look only one class of letters or letter
combinations backwards and 3 forward. Nevertheless,
the processing algorithm is parametric and could work
for any values of k and n. Thus a rule could have the
following form for k=3 and n=3:
- - - KK, W, NULL, NULL (Rule 1a)
where NULL stands for any step not considered by the
rule and the dash for an empty string. The above
structure will be transformed to
-, TK K, W, NULL, NULL (Rule 1b)

for k=1 and n=3. Note that it is very important to place k
steps before the central part of the rule so that the
algorithm understands which the central part is.
However, putting in the right context fewer steps than n,
will not affect the rule. Therefore rules la and 1b are
equivalent to rules 1c and 1d respectively.

R K Ka W (Rule IC)

- TKK, W (Rule 1d)
Rules la-1d state that 'K can be interchanged with K,
when no letter precedes them and when they are followed
by any letter or letter combination contained in cluster
W. We are not interested in what follows after W and
that is what the 2 NULL symbols denote in rules la and
Ib. W is defined as

W=(A,B’AEZHO,LKAMNEOILP.LTY,0.X,
¥.Q,-)

that is cluster W includes all the letters of the Greek
alphabet plus the dash, which is used when we are at the
beginning of a word (left context) or at the end (right
context). Thus the previous rule could be applied if for
example A follows T'K or K and the word starts with T'K
or K. The dash shows that before T'K or K, we have an
empty string, which means that we are at the beginning
of the word. The use of clusters prevents us from having
too many rules e.g.

- TKK, A
- TKK E

etc.

In the same way we have the following rule:

W, TZI T, W (Rule 2a)

That is TZI and TX are interchanged in all cases
regardless of what precedes or follows. If we used k=2
then the previous rule could be transformed to

NULL, W, TSI TS, W (Rule 2b)
or
W, TS, T-, W (Rule 2¢)

The above example shows that the values of k and n
depend on both the language and the decisions made by
the designer of the rules regarding their structure. In the
following we consider k=1 and n=3. According to the
rule

W, AZ A, -, -, - (Rule 3a)

AX and A are interchanged when they are last in a word.
Rule 3a is equivalent to Rule 3b:
W, AL A, - (Rule 3b)
Another option in the rules’ structure is depicted in the
following example:

W-, P(VI)T PT, W (Rule 4)

where

W-=
(A’B7r’A’E’Z7H’®7I’K7A’M7N’E’O7H’P’Z7T’Y7®7X’W’Q)

and
V1=(A.E,ILH,Y.ELLOLYI,AL,LO,Q,0Y)

Rule 4 says that PI" can be interchanged with PAT, PET,
PIT, PHI, PYT, PEIT, POIT, PYIT, PAIT, POT, PQI,
POYT in a specific context. This context is class W-,
which means that any letter could precede a letter or
letter combination included in the central part of the rule,
apart from the empty string, that is the rule is not applied
when we are at the beginning of a word. The right
context is class W, which means that any letter can
follow. Cluster V1 contains all the vowels and double
vowels of the Greek language. However, this leads to
invalid combinations such as PEIT", POIT", PYIT', PAIT.
Nevertheless sometimes we prefer to have broad clusters
so that they are not specific for one rule but not too broad
to avoid multiple invalid solutions, which will lead to
increasing the system’s response time. In the same way
cluster W in rules la-1d leads to invalid combinations

e.g. ['KIT but we use it to avoid having too many
different clusters and to prevent the designer of the rules
from omitting some rare cases of letter combinations.
That is, if the designer tried to make clusters that would
include only the appropriate (not redundant) letters or
letter combinations for a specific context, it is very likely
that s/he would fail to consider all the cases for this
particular context.

Other examples of rules’ structures are:

V,KTITTKNTMIL V, %, - (Rule 6)
V,KTI TTK NTMIL, V, -, - (Rule 7a)
V,KTI TTK NT MII, V, - (Rule 7b)

where V=(A,E,H,1,0,Y,Q2,0Y). Rules 7a and 7b are
equivalent.

RULES’ PROCESSING

The algorithm that processes the rules in order to
produce acoustically similar words, works as follows:
each one of the solutions (input strings to our algorithm)
given by the speech recognizer is processed. Each input
string is traversed from the first letter until the last one.
When a letter or a letter combination is the same as the
central symbol in the rule, then the rule is applied and
new strings are created. The pointer in the input string
moves forward as many positions as the ones denoted by
the central part of the rule. The procedure does not stop
when the condition for the application of the first
appropriate rule is met. It continues until all possible
rules are applied. An example is described in the
following. Suppose that the recognizer has given the
output

KATZIAOYNOZ

which is the input string to our algorithm and we have
rules

W, TZI, T, W (Rule 1)
W, T, TZ, W (Rule 2)
W, (VI'OY (V)OY, W (Rule 3)
- TKK, W (Rule 4)
where

W=(A,B’AEZHOLKAMNEOILPLTY,0.X,
¥.Q,-)

and

V=(A,E,T)

ATOY (3) —— N o——3x
TZT(I)/
AOY(3) ——N o——3x
roy@3) ——N o——3x
e ATOYO
/ \AOY(3) —N o——=
K@) — A
\ ATOY (3) —— N 0o——73%
T=Q) —1 d
AOY(3) ——N 0o——73%
ATOY (3) —— N 0o——73%
70 —17 &)
AOY(3 —— N——0——*%
ATOY 3) —— N o——7%
sz)/
AOY(3) —— N o——7%
oY 3) —— o—
TZ(])/AI' Y (3) N >
/ \AOY(3) —N o——=
K@) — A
\ ATOY 3) —— N 0o——3
T=Q) —1 -
AOY (3) —— N 0o——3
—_ L ATOY(R) N 0o——3
AOY (3) —— N 0o——3

Figure 1: The application of rules for the input string
KATZIAOYNOX (without look-up in the lexicon).

The first rule says that TZI can be interchanged with TZ
in any context. The second rule denotes that TX and TZ
can replace one another again in any context. The third
rule states that ATOY, ETOY, ITOY can be interchanged
with AOY, EOY and IOY respectively in any context.
Finally, according to the fourth rule, 'K can be replaced
by K or vice versa when I'K or K are first in a word. The
procedure of the rules’ application is depicted in Figure
1. The numbers in parentheses show the rule that is
applied each time. The input string KATXTAOYNOX is
traversed from left to right. The first letter is K. The
algorithm searches for a rule where K is one of the
central symbols. The 3 first rules cannot be applied but
the fourth one can. Thus we have two solutions so far:

'K (A1)
K (A2)
We go back to the input string. The pointer moves to A.
Again the algorithm will search for an appropriate rule.

However, no rule can be applied so the pointer moves to
T and the resulting strings so far are:

KA (B1)
KA (B2)

Now that we are in T, the first rule is applied and we get

TKATEI (C1)
TKATE (C2)
KATEI (C3)
KATE (C4)

The pointer moves to A. We go on to find if another rule
is applicable. The second rule is, so we get 4 additional
solutions:

T'KATZ (C5)
T'KATZ (Co)
KATZ (C7)
KATZ (C8)

The pointer moves to I for solutions C5-C8, but it was
placed at A for C1-C4. Consequently we have to store
different pointers according to the positions in the input
string, where different rules are applied. Now the
algorithm processes each one of the 8 solutions we have
so far. Rule 3 applies to solutions C1-C8, so we get

I'KATZIATOY (D1)
T'KATZIAOY (D2)
I'KATZATOY (D3)
T'KATZAOY (D4)
KATZIATOY (D5)
KATZIAQOY (D6)
KATZATOY (D7)
KATZAOY (D8)

The pointer moves to N. For solutions C5-C8 the pointer
is at I and no rule is applied so we get:

TKATEI (D9)
TKATZI (D10)
KATEI (D11)
KATZI (D12)

The pointer is positioned at A. The procedure continues
until we reach the end of the input string. The final
solutions are:

TKATEIATOYNOX (E1)
TKATZIAOYNOZ (E2)
TKATEATOYNOX (E3)
TKATEAOYNOZ (E4)
KATZIATOYNOX (ES)
KATZIAOYNOZ (E6)
KATZATOYNOZ (E7)
KATZAOYNOZ (E8)

ATOY 3) —— N o——7%
sz)/
AOY (3) N o——7%
ATOY (3) —— N o——=x
=)~ @
/ \AOY(3) N oO——3
K@) — A
\ ATOY (3) N 0o——3
TS (2) 7
AOY(3) —— N 0o——3
TZ(@2) —1
ATOY 3) —— N 0o——3
sz)/
AOY(3) ——N o——3
ATOY 3) —— N 0o——3
T2y @
/ \ono) —N 0o——7=%
K@) — A
\ ATOY 3) —— N o——7%
=@ —1 d
AQY (3) N o——7%
TZ@) —1

Figure 2: The application of rules for the input string
KATZIAOYNOX (with look-up in the lexicon).

TKATEZIATOYNOX (E9)

TKATZIAOYNOX (E10)
TKATZIATOYNOZ (E11)
TKATZIAOYNOX (E12)
KATEIATOYNOS (E13)
KATZIAOYNOX (E14)
KATZIATOYNOZ (E15)
KATZIAOYNOX (E16)

Note that some solutions are identical, e.g. E1 and E9,
E2 and E10, E5 and E13, E6 and E14. This does not
constitute a problem since the redundant strings will be
discarded before the final search in the database. That is,
the system will first look up the solutions in the lexicon
of distinct surnames and it will discard the invalid ones.
Finally it will search for the remaining solutions in the
telephone directory. The reason the algorithm does not
search for identical strings each time new solutions are
produced by the application of rules, is in order to be as
fast as possible. Some other things have to be taken into
consideration as well. If Rule 1 had the following form:

W, TS TSI, W (Rule 1a)

then the algorithm would first find the substring TX, then
it would replace it with TXI and move the pointer to I.
Therefore instead of TKATZIA, TKATZA, KATZIA and
KATZA we would get TKATZIIA, TKATXIA,

KATZIIA and KATZIA. To avoid this problem, either
we put in the centre of the rule the substrings according
to their length, or we modify the algorithm so that it takes
into account the length of the symbols.

Some rules may produce words that do not exist and are
not included in the database. It is desirable and saves
much processing time to stop extending a substring if we
realize that it would not lead to valid solutions. Thus the
system looks up a solution in the lexicon of distinct
surnames if its length has exceeded the threshold of 4
letters. If no word that begins with this substring exists,
the solution is abandoned. The reason we start looking
up the solutions in the lexicon only when their length is
greater than 4 is that normally it takes more than 4 letters
to decide whether a surname is valid or not. If we started
looking up the solutions in the lexicon from the first
letter, this would increase the processing time with no
benefit. In the previous example if the system does not
find any words starting with e.g. TKATZ or KATZ it will
abandon all the solutions produced by applying rules to
I'KATZ or KATZ. In Figure 2 we can see how the rules
are applied and some paths are abandoned when they
lead to invalid solutions. Again as in Figure 1, the
numbers in parentheses indicate the applied rule.

Currently the rules are extracted manually. However, a
technique based on Hidden Markov Models (HMM) for
automatically extracting the rules from the list of the
most frequent surnames is under development, which
will improve further the efficiency of the proposed
method. Statistical processing of the list of most frequent
surnames has also produced weights for each rule.
Suppose that we have rules 1 and 2 (see the Rules’
Processing section). We find N1 surnames that would be
similar if we interchanged TZI and TX in any context W,
and N2 surnames that would be equivalent if we replaced
TX with TZ and vice versa again in any context W. If
NI1>N2 then Rule 1 has a greater weight than Rule 2.
The weights of the rules that have been used to produce a
solution are combined with the confidence of the source
hypothesis (the one were rules were applied) provided by
the speech recognizer, to give the confidence of the new
solution. Thus in the end, after we discard the invalid
solutions by looking them up in the lexicon of distinct
surnames, we have all the valid surnames with their
confidence levels and we are ready to search in the
telephone directory.

EXPERIMENTAL RESULTS

Tests were carried out with 110 people. The 76 males
called the system 381 times and the 34 females 123
times. The recognition accuracy for the surnames before
the application of lexical rules was 70,85%. In that case
the speech recognizer produced only the best hypothesis
(N=1). There was also an additional stage, where the
system asked the user to confirm whether the recognized

surname was correct or not. A speech synthesizer was
used to speak out the recognized surname. However, the
low quality of speech synthesis caused problems. In total
we had 105 missed calls. 51 of them (10.12% of the total
calls) arose from the fact that the recognizer recognized
correctly the uttered surname but when the synthesizer
pronounced this name and asked for confirmation, the
user did not understand that the name uttered was the
correct one and gave a negative confirmation. On the
other hand 10 calls (1,98% of the total calls) were missed
because the recognizer produced an invalid surname.
This surname was uttered by the synthesizer, the user
thought that the correct name was pronounced and gave a
positive confirmation.

The above results led us to use different approaches in
order to improve the speech recognition accuracy. To
carry out the new tests 37 people (23 male and 14
female) uttered 10 different surnames each, that is we
had 370 surnames to be recognized in total. We
experimented with different values of N and both with
and without lexical rules. The results are depicted in
Table 1. The first line shows the absolute values and the
second the % percentage.

Male Female Total
Without Lexical Rules
-1 159 98 257
69.13% 70.00% 69.46%
N=5 163 100 263
70.87% 71.43% 71.08%
N=10 168 102 270
73.04% 72.85% 72.97%
» 179 108 287
N=20 77.82% 77.14% | 77.56%
_ 191 116 307
N=30 83.04% 82.85% 82.97%
With Lexical Rules
-1 195 119 314
84.78% 85.00% 84.86%
N=5 202 123 325
87.82% 87.85% 87.83%
N=10 207 127 334
90.00% 90.71% 90.27%

Table 1: Experimental results.

If we do not use lexical rules, the best results are given
when the recognizer produces the 30-best hypotheses.
However, in this case the response time is quite
increased, which necessitates a lower value of N. We
have not kept record of the response time in all these
tests. Nevertheless, it was obvious that the system
stopped being real-time with N greater than 5 because
the computational cost became too high. When we
applied lexical rules, we realized that N=1 was enough to
produce better results than N=30 (with no lexical rules)

and with no significant computational cost. This was due
to the fact that the cost of processing the signal in order
to produce multiple outputs is much higher than the time,
which is required in order to take an output and apply the
lexical rules. Moreover, the application of lexical rules
leads to a lot more than 30 solutions, which have the
advantage to be based on language dependent data and
not only on the acoustic signal and thus the probability of
including the correct surname is higher. The results are
even better when we have N=10 and use lexical rules.
But in this case, as for N=10 without rules, the response
time is not very good. In conclusion N=5 with lexical
rules is the solution that combines good recognition
accuracy and real-time response.

CONCLUSIONS

In this paper we described a technique applied to large
vocabulary speech recognition. This method aims at
refining the N-best hypotheses’ list provided by a speech
recognizer by applying lexical rules. The performed
experiments showed that our approach, that is the
application of rules, results in better recognition accuracy
compared to the cases when no rules are applied, for the
same value of N or even when N is smaller in the first
case. That is the accuracy for N=1 when rules are applied
is better than the accuracy for N=30 without rules.
Moreover, the computational cost is much smaller, which
leads to real-time response without sacrificing accuracy.

Currently the rules are formed manually, so our future
work focuses on developing an algorithm for their
automatic extraction. In this way, we expect that we will
cover cases not captured by the human designer and at
the same time we will completely automate the process.
Further experiments will be carried out concerning the
optimization of the trade-off between recognition
accuracy and response time.

BIBLIOGRAPHY
1. European Project LE-48315, IDAS.

2. Mitchell, C.D. and Setlur, A.R. Improved spelling
recognition using a tree-based fast lexical match. In
Proc. of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP’99),
Phoenix, AZ.

3. Secide, F. and Kellner, A. Towards an automated
directory information system. In Proc. of the 5th
European Conference on Speech and
Communication Technology (Eurospeech’97), Vol.
3, pp- 1327-1330, Rodos, Greece, Sept. 22-25.

4. Whittaker, S.J. and Attwater, D.J. Advanced speech
applications — the integration of speech technology
into complex services. ESCA workshop on Spoken
Dialogue Systems — Theory and Application, pp.
113-116, Visgo, June 1995.

