
A Graphical Tool for Handling Rule Grammars
in Java Speech Grammar Format

Kallirroi Georgila, Nikos Fakotakis, George Kokkinakis

Wire Communications Laboratory
Electrical and Computer Engineering Dept.

University of Patras
265 00 Rion, Patras, Greece

{ rgeorgil, fakotaki, gkokkin} @wcl.ee.upatras.gr

Abstract
This paper describes a graphical tool used for generating and depicting rule grammars in the Java Speech Grammar Format (JSGF),
which has been developed in the framework of the EC-funded research project GEMINI (Generic Environment for Multilingual
Interactive Natural Interfaces, IST-2001-32343). A vocabulary builder component that produces the phonetic transcription of the
words included in the grammar file is also incorporated into the tool. Currently, the tool supports embedded grapheme-to-phoneme
conversion only for Greek in SAMPA format. However, a language-independent function is included that enables the user to write
context-dependent rules for symbol conversions (both grapheme-to-phoneme and phoneme-to-grapheme). Manual vs. tool-based
handling of grammars are compared and evaluated in terms of time required for grammar creation and efficiency.

Introduction
The goal of this work is to describe a graphical tool

used for generating and depicting rule grammars in the
Java Speech Grammar Format (JSGF). Developed by Sun
Microsystems, JSGF defines a platform-independent,
vendor-independent way of describing one type of
grammar, a rule grammar (also known as a command and
control grammar or regular grammar). JSGF uses a textual
representation that is readable and editable by both
developers and computers, and can be included in Java
source code. JSGF is simple and easy to understand and
thus has become a standard (Sun Microsystems, 1998).

This tool has been developed in the framework of the
EC-funded research project GEMINI (Generic
Environment for Multilingual Interactive Natural
Interfaces, IST-2001-32343) (www.gemini-project.org).
The project has two main objectives: First, the
development of a flexible Application Generation
Platform (AGP) able to produce user-friendly mixed-
initiative interactive multilingual and multi-modal
dialogue interfaces to databases with a minimum of
human effort, and second, the demonstration of the
platform’s efficiency through the development of two
different applications based on this platform.

The AGP will exploit the structured information
contained in databases of information services and sets of
sample dialogues, to create customized dialogue models
(i.e. dialogue scripts, grammars and lexicons) for specific
information services with the minimum of human effort.

The tool presented in this paper is part of the AGP and
handles grammars for the speech modality. Moreover, a
vocabulary builder component that produces the phonetic
transcription of the words included in the grammar file is
also incorporated into the tool. Currently, the tool supports
embedded grapheme-to-phoneme conversion only for
Greek in SAMPA format. However, a language-
independent function is included that enables the user to
write context-dependent rules for symbol conversions
(both grapheme-to-phoneme and phoneme-to-grapheme).

In the following sections, the tool’s functionality will

be described in detail. In addition, the generation of
grammars using the tool will be compared and evaluated
against their manual development in terms of time and
efficiency.

Java Speech Grammar Format
A rule grammar specifies the types of utterances a user

might say (a spoken utterance is similar to a written
sentence). For example, a simple grammar for giving the
arrival city in a flight reservation system would include
sentences like “ I would like to travel to Lisbon”, “my
destination is Paris” , etc.

A single file defines a single grammar. The definition
grammar contains two parts: the grammar header and the
grammar body. The grammar header includes a self-
identifying header, declares the name of the grammar and
optionally declares imports of rules from other grammars.
The body defines the rules of the grammar, some of which
may be public, that is, can be accessed by other grammar
files. The two patterns of rule definitions are:

<ruleName> = ruleExpansion ;
public <ruleName> = ruleExpansion ;

The rule expansion defines how the rule may be
spoken. It is a logical combination of tokens (text that may
be spoken) and references to other rules. An expansion
defines how a rule is expanded when it is spoken – a
single rule may expand into many spoken words plus
other rules which are themselves expanded.

For the aforementioned destination paradigm the
corresponding JSGF file would be as follows:

#JSGF V1.0 ISO8859-1 en_Uk;
grammar journey;

<want> = I (want to | would like to | must)
<travel> = fly | go | travel
<polite> = please | if possible
<arrival> = Lisbon {destination=“Lisbon”} | Paris
{ destination= “Paris”} | Athens { destination= “Athens” }

<want_dest> = <want> <travel> <to> | my destination is
<destination> = [<want_dest>] <arrival> <polite>*

Note that rule names are contained within angle
brackets. A vertical bar ‘ |’ marks alternatives, ‘ ()’
parentheses are used for grouping, and ‘ [] ’ for optional
grouping. A rule expansion followed by the asterisk
symbol (Kleene star) indicates that the expansion may be
spoken zero or more times whereas a plus symbol (not
depicted in the above example) indicates that the
expansion may be spoken one ore more times. Quotes can
be used to surround multi-word tokens and special
symbols, e.g. the “New York” subway. A multi-word
token is useful when the pronunciation of words varies
because of the context. Multi-word tokens can also be
used to simplify the processing of results, for example,
getting single-token results for “New York” , “Sydney”
and “Rio de Janeiro” . Tags, that is, strings delimited by
curly braces ‘ { } ’ provide a mechanism for grammar
developers to attach application-specific information to
parts of rule definitions. Tag attachments do not affect the
recognition of a grammar. Instead, the tags are attached to
the result object returned by the recogniser to an
application (Sun Microsystems, 1998). Thus when Lisbon
is recognised the application variable ‘destination’ will be
filled with the value “Lisbon” .

Grammar Tool Description
For each grammar the internal structure in which all

the information is stored is as follows:

Grammar: - Grammar name
 - Grammar type

- Grammar language
- List of rules

Rule: - Rule name
- Rule type
- List of attributes
- List of tokens

Rule type: Public || Private

Attribute: - Attribute name
- Attribute type

Attribute type: Integer || String || Boolean

Token: - List of contents
 - Contents combination type

- List of semantics

Contents combination type: AND || OR

Semantic: - Attribute name
- Attribute value

Attribute value: - Value
 - Attribute value

Content: - Name
- Optional flag (true || false)
- Kleene star flag (true || false)
- Plus symbol flag (true || false)
- Quotes flag (true || false)
- Content value

Content value: Token || String || Rule

To illustrate the functionality of the tool we will show
how the example rule grammar in section “Java Speech
Grammar Format” may be generated. The first step is to
give a name to the grammar and then select its type and
language. Currently only “JSGF” type is supported.
However, the grammar file is first saved in XML format
and then transformed to JSGF. This makes it easier to
incorporate in the future other formats as well. Four
languages are supported English, Greek, German, and
Spanish.

The next step is to create a new rule, select its type
“public” or “private” and its attributes where semantic
information will be stored.

Moreover, the tokens of the rule must be created. The
tokens of a rule are combined with “OR” . The rule
<want> is formed by one token that has two contents, the
string “ I” and a token “ (want to | would like to | must)”
that consists of 3 strings (see figures 1, 2 and 3). More

Figure 1: Rules consist of tokens

Figure 2: A token is formed as part of a rule

specifically, a token may include strings, other tokens or
rules. In addition, there is an option to choose whether the
contents of the token should be linked with an “AND” or
an “OR” . The grammar developer is free to type words
and strings of words or insert them from vocabularies that
can be loaded from “Menu → Options” . Multiple
vocabularies can be active simultaneously (see Figure 4).
There are no semantic attributes for the rule <want>.

Figure 3: A token may be formed as part of another token

Figure 4: Words are inserted either manually or using a

loaded vocabulary

The contents of a token, that is, strings, rules or other
tokens may be tagged as optional or enclosed in quotes.
They may also be expanded zero or more times (Kleene
star symbol in JSGF) or one or more times (plus symbol in
JSGF).

In the same way the rules <travel>, <polite> and
<want_dest> are formed. The rule <arrival> has one
semantic attribute i.e. destination, and as many tokens as
the cities that are included in the grammar. In most cases,
city names, surnames, airline companies names and other
similar information is stored in databases and may consist
of hundreds of records. Thus to help the grammar

developer incorporate all this information in one step, the
tool supports the “ Insert Tokens” option. The user can
load a file that contains all database records, link it to the
correct semantic attribute and decide on the type of the
tokens (optional, in quotes, expanded zero or more times,
expanded one or more times). Figure 5 depicts the
insertion from file procedure and Figure 6 the resulting
structure.

Figure 5: Insertion of multiple tokens simultaneously

Figure 6: Multiple tokens loaded with their semantic

attribute

In Figure 7, it is shown how the rule <destination> is
generated. The rule has been slightly modified compared
to the example in the Java Speech Grammar Format
section to illustrate another available option, that is, to
have a semantic attribute of one rule that refers to the
semantic attribute of another rule. Thus the rule
<destination> is reformed as follows:

<destination> = ([<want_dest>] <arrival> <polite>*)
{ final_destination = arrival.destination}

The redundant parentheses that appear in most
examples assist in building the internal grammar structure
and are discarded when the final JSGF file is saved.
Moreover, the user is allowed to preview the complete
grammar structure before saving it as well as load an
already available grammar file.

Figure 7: The semantic attribute of one rule refers to the

semantic attribute of another rule

Vocabulary Builder
A vocabulary builder component that produces the

phonetic transcription of the words included in the
grammar file is also incorporated into the tool. Currently,
the tool supports embedded grapheme-to-phoneme
conversion only for Greek in SAMPA format (SAM-PA).
However, a language-independent function is included
that enables the user to write context-dependent rules for
symbol conversions (both grapheme-to-phoneme and
phoneme-to-grapheme).

The structure of the rules is as follows: L1, L2, …, Lk,
S, R1, R2, …, Rn where Li i=1, …, k is the left context of
the rule, S is the class, which includes the symbols or
symbol combinations for conversion, and Rp p=1, …, n is
the right context of the rule. The values of k and n could
vary according to the language and the way the designer
of the rules has decided to form them. A similar rule
definition mechanism has also been used for building
phonological rules to enhance recognition performance
(Georgila et al., 2002). An example is as follows (k=1 and
n=1):

-, ND d, w#

This rule says that the phonetic transcription of ND is
d when an empty string is preceded and the class #w
follows. A class may include one or more symbols or
symbol combinations. That is, if #w=(A, E, I, O, U) this
means that when ND is preceded by an empty string and
followed by A, E, I, O or U it will be converted to d. Note
that in the above example upper case letters indicate the
graphemic form and lower case ones denote the phonetic
transcription. This rule mechanism works well for the
Greek language in which there are not many grapheme-to-
phoneme or phoneme-to-grapheme conversion rules.
However, it has not been tried for other languages with
more complex phonological features.

Evaluation
Three JSGF grammar developers were asked to use

and evaluate the tool. They had to build grammars for 15

dialogue states both manually and with the aid of the tool.
For 5 of these dialogue states they were provided with
grammar files of similar tasks. In 3 of the remaining 10
dialogue states they were asked to update half-completed
grammars. Thus they had to build from scratch 7
grammars. Grammars varied in complexity from very
simple to quite complicated ones. Then for each of the
grammars they were asked to fill a questionnaire with the
following “Yes/No” questions:

Did you have to build the grammar from scratch?
Did you find it easier to build the grammar using the tool
rather than manually?
Did you make any mistakes in the manual grammar
building?
Did it take you more time to create the grammar
manually?
Was a grammar for a similar task available?

The developers answered that they found it easier to
build grammars manually when their complexity was low
and when they were provided with a grammar file in a
similar task. This is because it was easier to make changes
manually in the text file of the similar task grammar.
However, when they were asked to deal with grammars of
new tasks they all agreed that the use of the tool proved
more efficient than manual creation in both update and
from scratch building. Finally, using the tool prevented
them from making mistakes that sometimes are hard to
locate when the grammar has been developed manually.

Summary and Conclusions
This work describes a graphical tool used for handling

rule grammars in the Java Speech Grammar Format
(JSGF), which has been developed in the framework of
the EC-funded research project GEMINI (Generic
Environment for Multilingual Interactive Natural
Interfaces, IST-2001-32343). Grammar files are first
saved in XML format and then transformed to JSGF. This
makes it easier to incorporate other formats as well in the
future.

A vocabulary builder component that produces the
phonetic transcription of the words included in the
grammar file is also incorporated into the tool. Currently,
the tool supports embedded grapheme-to-phoneme
conversion only for Greek in SAMPA format. However, a
language-independent function is included that enables the
user to write context-dependent rules for symbol
conversions (both grapheme-to-phoneme and phoneme-to-
grapheme). Evaluation on manual vs. tool-based handling
of grammars proved the efficiency of the tool in terms of
time required for grammar generation and correctness.

References
Georgila, K., Fakotakis, N., Kokkinakis, G. (2002). Large

Vocabulary Search Space Reduction Employing
Directed Acyclic Word Graphs and Phonological Rules.
International Journal of Speech Technology, Kluwer
Academic Publishers, Vol. 5, No. 4, pp. 355-370.

SAM-PA, Standards, Assessment, and Methods: Phonetic
Aplhabets. http://phon.acl.ac.uk/home/sampa/home.htm

Sun Microsystems (1998). Java Speech Grammar Format
Specification Version 1.0.

