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Abstract. Some applications of speech recognition, such as automatic directory information services, require
very large vocabularies. In this paper, we focus on the task of recognizing surnames in an Interactive telephone-
based Directory Assistance Services (IDAS) system, which supersedes other large vocabulary applications in
terms of complexity and vocabulary size. We present a method for building compact networks in order to re-
duce the search space in very large vocabularies using Directed Acyclic Word Graphs (DAWGs). Furthermore,
trees, graphs and full-forms (whole words with no merging of nodes) are compared in a straightforward way
under the same conditions, using the same decoder and the same vocabularies. Experimental results showed
that, as we move from full-form lexicons to trees and then to graphs, the size of the recognition network is
reduced, as is the recognition time. However, recognition accuracy is retained since the same phoneme combi-
nations are involved. Subsequently, we refine the N-best hypotheses’ list provided by the speech recognizer by
applying context-dependent phonological rules. Thus, a small number N in the N-best hypotheses’ list produces
multiple solutions sufficient to retain high accuracy and at the same time achieve real-time response. Recognition
tests with a vocabulary of 88,000 surnames that correspond to 123,313 distinct pronunciations proved the effi-
ciency of the approach. For N = 3 (a value that ensures we have fast performance), before the application of
rules the recognition accuracy was 70.27%. After applying phonological rules the recognition performance rose
to 86.75%.

Keywords: large vocabulary speech recognition, automatic directory assistance services, trees, Directed Acyclic
Word Graphs (DAWGs), search space reduction, context-dependent phonological rules

1. Introduction

The automation of Directory Assistance Services
(DAS) has attracted great interest in the last decade
due to the visible benefits both for the telephone com-
panies and the subscribers. For example, every year
telephone companies in the United States spend over
$1.5 B providing DAS. Typically it takes the operator
about 25 sec to complete a DAS call. A reduction of
only one second in this average work time represents
a savings of over $60 M a year (Lennig et al., 1995).
On the other hand, customers benefit from the fact that

they are served without delays and far beyond working
hours, possibly 24 hours a day.

Several demonstrations have been reported, such as
the system of British Telecom (Whittaker and Attwater,
1995), FAUST (Kaspar et al., 1995) and PADIS-XL
(Seide and Kellner, 1997). PADIS (Philips Automatic
Directory Information System) has a system driven
dialogue where the caller must reply with only one
word, spelled or spoken, per dialogue turn, and han-
dles a database of 131,000 entries. Recently a system
based on PADIS, which can handle a complete country
has been presented in Schramm et al. (2000). Nortel
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has deployed its product ADAS Plus (Automated Di-
rectory Assistance System-Plus), which partially auto-
mates the DAS function through speech recognition,
in Quebec. This system distinguishes between two lan-
guages (English and French) and automates the recog-
nition of city names (Gupta et al., 1998). In Italy, Tele-
com Italia carried out in July 1998 a field trial in 13
districts using a system designed to completely auto-
mate a portion of calls on a country wide basis. This
implies recognition of about 25 million directory en-
tries distributed in 8,105 towns. The required parame-
ters are collected separately through specific requests
to the user. They are supposed to be uttered in isola-
tion, e.g., “Torino”, not “the city of Torino” (Billi et al.,
1998). The Durham telephone enquiry system has been
successfully applied to English and Italian telephone
databases of up to 100,000 entries (Collingham et al.,
1997). The DirectoryAssistant of Phonetic Systems
(http://www.phoneticsystems.com) utilizes a patented
core technology of advanced probability-based algo-
rithms to perform sophisticated searches of extremely
large databases. It is currently commercially deployed
delivering speech-enabled DAS for over 5 million
wireline and wireless telephone listings in Finland,
in cooperation with Sonera Info Communications
Ltd.

In this paper we present a spoken dialogue system
for automating DAS that was developed in the frame-
work of the EU project IDAS1 and then extended and
improved so that it can be utilized in real-world condi-
tions. Another demonstration also funded by IDAS has
been reported in Córdoba et al. (2001). In automatic
directory information systems, a speech recognizer is
expected to be able to handle very large vocabularies.
Moreover, these vocabularies are expected to be “open-
set lexicons” meaning that more words, e.g., surnames,
first names, city names, may need to be added later.
Therefore, efficient techniques able to cope with the
above constraints should provide a real-time search
operation over the whole vocabulary structure and
a means of easy vocabulary augmentation, and at the
same time give high accuracy rates. The greatest part
of this paper focuses on the algorithms developed to
handle large vocabulary recognition issues. However,
the dialogue flow is also described to give the reader
an overall picture of the application and its special
features.

The paper is organized as follows: Section 2 presents
an overview of the system. The techniques applied to
deal with search space reduction issues are described

in detail in Section 3. The performed experiments are
presented in Section 4. Finally, a summary and conclu-
sions are given in Section 5.

2. System Overview

2.1. Dialogue Strategy

In the first step of the dialogue the system asks the
user if s/he is looking for the telephone number of a
company, an organization/institute or a person. A typi-
cal dialogue in which the caller requests the telephone
number of a company or organization/institute is as
follows:

. . .
System: Please give the city name.
Caller: The city is Athens.
System: Could you please specify the district?
Caller: The organization is located in Kallithea.
System: Please give the name of the organization.
Caller: Greek Organization of Tourism.
System: The number you requested is . . .

If the user gives the city name of Athens or Thessa-
loniki (the biggest cities in Greece), the system will
prompt him/her to specify a district in the above city.
However, the caller could also give directly the name
of the district, without having to utter the city name
first. In those cases in which the system cannot find the
requested telephone number in the district provided by
the caller, it will extend the search space to the other
districts of the city as well. Thus, it is ensured that even
if the user has no knowledge about the exact district,
which happens very often, s/he will be able to get the
desired information.

Figure 1 depicts the dialogue flow in case the user re-
quests a person’s telephone number. A typical dialogue
is as follows:

. . .
System: Please give the city name.
Caller: Patras.
System: Please utter the first letter of the surname.
Caller: It starts with a G.
System: Please give the person’s surname.
Caller: His name is Georgiou.
System: Please give the forename of the person.
Caller: Alexis.
System: The number you requested is . . .
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Figure 1. Dialogue flow of the system.

The above example shows that the system asks for the
first letter of the person’s surname in order to reduce the
search space because the surname recognition involves
far two many candidate solutions compared to the
recognition of companies or organizations/institutes.
After the system has gathered the necessary informa-
tion, it searches the telephone directory, and the tele-
phone number asked for is spoken to the user as a
mixture of prerecorded speech (for the prompt) and
synthesized speech (for the digits that form the tele-
phone number). If the search in the database produces
more than one solution, the system will inform the user
about all of them.

2.2. Comparison with Other Approaches

An efficient search through a large vocabulary structure
may be performed by two common methods: the first
is to reduce the size of the active vocabulary in every
dialogue turn and the second to use spelling.

In the Philips Automatic Directory Information Sys-
tem (Seide and Kellner, 1997), the dialogue flow is as

follows: In the first turn, the user is asked to spell out
the desired surname. At that time, the search space
consists of the full database, but the recognizer is lim-
ited to spelling, and the number of possible surnames
extracted is usually significantly less than 100. In the
subsequent dialogue turns, the user is asked to utter the
surname, the first name, and finally the street name, one
after the other. The search space is reduced with every
dialogue turn. Note that here the caller must utter only
one word per dialogue turn, e.g., “Aachen”, whereas
in our system there is no such restriction. That is, the
utterance “he lives in Athens” is allowed and will be
correctly processed.

In the British Telecom Automatic Directory Assis-
tance Service (Whittaker and Attwater, 1995) the dia-
logue model is somewhat different. The caller is asked
to give the town and the road name first. Then the
system prompts the user to utter the desired surname
and its spelling. During the development of their sys-
tem, British Telecom experimented with all sorts of
dependencies and reached the conclusion that if recog-
nitions stay independent of each other and the N -
best lists are intersected with the database, confidence



358 Georgila, Fakotakis and Kokkinakis

increases while accuracy drops. In this case the recogni-
tion task is more difficult because the entire vocabulary
is active. Therefore, if the recognizer provides a solu-
tion with high probability then the recognition result
is almost certain to be correct, which implies a high
value of confidence. On the other hand, if successive
recognitions are constrained by previous ones then the
recognition task is easier since the active vocabulary is
restricted. Thus, accuracy gets higher and confidence
decreases.

Phonetic Systems employs either search space re-
duction with every dialogue turn or a method of search-
ing the entire dictionary using a path that passes through
the words with the highest probability of being correct.
In the second case, the entire dictionary is organized in
such a way as to examine the input word against var-
ious basic characteristics of each word in the restruc-
tured dictionary subset. Only those words that “pass”
these preliminary checks will be further compared with
the input word using more extensive and sophisticated
similarity checks (Phonetic Systems, 2002).

In our system each dialogue turn is independent of
the previous ones. Therefore the search space is not
reduced with every dialogue turn, with only two ex-
ceptions. The first one is between the subsequent di-
alogue turns of prompting the caller to give the first
letter of the surname and then fully utter it. In this case,
the search space is reduced significantly since now the
active vocabulary consists only of the surnames that
start with the previously recognized letter. The second
exception is between the dialogue turns of asking for
the city name and then for a specific district (only for
Athens and Thessaloniki). Now the active vocabulary
is restricted to the districts of the previously selected
city.

The reason we have decided to keep dialogue turns
independent of each other is that we are interested in
high confidence. Nevertheless, experimentation with
constrained recognitions by previous ones is a process
in progress, which requires that the speech recognizer
be improved so that possible recognition errors do not
affect the subsequent dialogue turns. An additional rea-
son for the independence of dialogue turns is that it
deals with the problem that would arise otherwise if
the caller gave a false district. If the search space was
reduced with every dialogue turn and the system failed
to find the requested information in the district specified
by the user, it would not have the alternative solution of
extending the search to other districts in the same city.
This is because the list of active surnames or first names

would have been limited to include only surnames and
first names of the selected district.

In Greek, spelling is not usual (splitting the word
in syllables is preferred), and thus we have decided
not to use it in our dialogue system. In our applica-
tion, the EU project IDAS, the recognizer must dis-
tinguish between 257,198 distinct surnames that cor-
respond to 5,303,441 entries in the directory of the
Greek Telephone Company. By restricting the search
space to the most frequent 88,000 ones that correspond
to about 123,313 distinct pronunciations, 93.57% of
the directory’s listings is covered. Kamm et al. (1995)
performed a study on the relationship between recog-
nition accuracy and directory size for complete name
recognition and reached the conclusion that accuracy
decreases linearly with logarithmic increases in direc-
tory size. The above conclusion shows that it is neces-
sary to develop efficient algorithms for handling large
vocabulary recognition issues. Although the motiva-
tion behind their development was the lack of the use
of spelling in Greek, the techniques that will be de-
scribed in the following sections are suitable for any
language.

2.3. Speech Recognition

The speech recognizer we use was built with the HTK
Hidden Markov Models toolkit (Young et al., 1997),
which is based on the Frame Synchronous Viterbi
Beam Search algorithm. The acoustic models are tied
state context-dependent triphones of five states each. In
order to train the recognizer we used the SpeechDat-II
Greek telephone database (Van den Heuvel et al.,
2001). This database is a collection of Greek annotated
speech data from 5000 speakers (each individual hav-
ing a 12-minute session). We made use of utterances
taken from 3000 speakers in order to train our system.

In all dialogue turns, the HTK decoder traverses a
word network containing possible speaker utterances
in order to find the N -best hypotheses. The candidate
solutions, e.g., surnames, first names, city names, form
a sub-network of the full network. In surname recog-
nition in order to deal with the large vocabulary issue,
we replace the word sub-networks of surnames with
phoneme networks that can produce the phonetic tran-
scriptions of all the above surnames using DAWG (Di-
rected Acyclic Word Graph) structures. A DAWG is a
special case of a finite-state automaton where no loops
(cycles) are allowed. DAWGs allow sharing phones
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across different words (as opposed to using a sepa-
rate instance for every phone in the pronunciation of
each word), which reduces recognition search space
and therefore response time. Most speech recognition
systems that have to deal with very large vocabular-
ies use a tree structure (i.e., trie) (Gopalakrisnan et al.,
1995; Nguyen and Schwartz, 1999; Suontausta et al.,
2000). However, trees are not the optimal way to repre-
sent lexicons, due to their inadequacy to exploit com-
mon word suffixes. For this reason, the use of DAWG
structures is more appropriate. DAWGs have been suc-
cessfully used for storing large vocabularies in speech
recognition. Hanazawa et al. (1997) used an incremen-
tal method (Aoe et al., 1993) to generate deterministic
DAWGs. The aforementioned method was applied to
a 4000-word vocabulary in a telephone directory as-
sistance system. However, in Hanazawa et al. (1997)
the comparison between the tree and the DAWG was
made using different decoding algorithms. Thus the ef-
ficiency of the DAWG was not shown under the same
conditions. Betz and Hild (1995) used a minimal graph
to constrain the search space of a spelled letter recog-
nizer. However, neither did they report details on the al-
gorithm they applied, nor did they compare graphs with
full-forms (whole words with no merging of nodes)
and trees. Our novelty is the comparison between full-
forms, trees and graphs under the same conditions, that
is, using the same decoder and the same vocabular-
ies. Furthermore, we use trees and graphs with a con-
ventional decoder in contrast with other existing tech-
niques (Hanazawa et al., 1997; Suontausta et al., 2000).

Since there is no dialogue turn for spelling and the
caller is prompted directly to utter the surname, the
value of N in the N -best hypotheses’ list of the speech
recognizer must be high. This will ensure that the cor-
rect surname (the one uttered by the user) is included.
There are many acoustically similar surnames, and if
N is small it is very likely that the correct surname does
not appear in the list because the N positions of the list
are all occupied by surnames acoustically similar to the
correct surname. However, a very high value of N will
slow down the system’s response.

After the speech recognizer has produced the N -
best hypotheses, context-dependent phonological rules
are applied, which define classes of phonemes and
phoneme combinations, the members of which can
be falsely recognized in a specific context. That is,
a phoneme or phoneme combination of a class could
be mistaken for another phoneme or phoneme com-
bination of the same class in the context defined by

the rule. Thus, recognition errors and pronunciation
variability are taken into consideration. The solutions
created by applying the phonological rules are sur-
names acoustically similar to the N -best hypothe-
ses produced by the speech recognizer. The rules are
language-dependent and they are carefully selected so
that they cover the most probable interchanges between
phonemes or phoneme combinations, but without lead-
ing to too many solutions. On the other hand, the rules’
processing algorithm is language-independent.

Most approaches incorporate pronunciation varia-
tion into the lexicon that will be used by the recognizer
in the decoding process (Chen, 1990; Schmid et al.,
1993; Ramabhadran et al., 1998). Our proposal is to
apply information on pronunciation variation in a sep-
arate stage after the recognition task. That is, we apply
phonological rules to the recognizer’s output. The ad-
vantage of such an approach is the gain in response
time. The cost of processing the signal in order to pro-
duce multiple outputs is much higher than the time
required for taking an output and applying the phono-
logical rules.

A similar approach has been applied to letter recog-
nition in Mitchell and Setlur (1999). The spoken letters
processed by a free letter recognizer generate a list of
N -best hypotheses. Each hypothesis is converted to a
sequence of letter classes that are used to search a tree.
That is, acoustically similar letters have been grouped
to form a letter class and each letter has been replaced
by the name of the class in which it belongs. Starting
at the root of the tree, the class sequence specifies a
path to a leaf that contains names similar to the input
letter hypotheses. The concatenation of names across
all N -best leaves provides a short list of candidates that
can be searched in more detail in the rescoring stage
using either letter alignment or an acoustic search with
a tightly constrained grammar.

3. Search Space Reduction Techniques

3.1. Construction of Full-Forms, Trees and Graphs

Our approach to the use of DAWGs for large vocabulary
speech recognition was first described in Georgila et al.
(2000). In the current work, we explain this technique
in more detail, and we show how our method can be
used in conjunction with phonological rules for achiev-
ing high accuracy rates. Furthermore, the above tech-
niques are implemented in a real-world application.
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Figure 2. (a) Full-form word network, (b) phoneme DAWG produced by our incremental algorithm, (c) phoneme graph in the decoder format,
and (d) phoneme tree also in the decoder format.

We use incremental construction of DAWGs in order
to be able to update them without having to build them
from scratch in every change. We have used the incre-
mental construction algorithms described in Sgarbas
et al. (1995, 2001) because we are particularly inter-
ested in non-deterministic DAWGs since they appear

to be even more compact than the minimal determinis-
tic ones (Sgarbas et al., 2001).

A word (full-form) network consisting of surnames
is replaced by a phoneme network that can produce
the phonetic transcriptions of all the above surnames
(Fig. 2(a) and (c)). Thus, a lexicon of surnames in
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phonetic transcription (Fig. 2(a)), is first trans-
formed into a Directed Acyclic Word Graph (DAWG)
(Fig. 2(b)). Our algorithm produces the DAWG of
Fig. 2(b), where simple monophone pronunciations la-
bel the transitions between nodes. The next stage of the
method is to convert these structures into the format
that is accepted by the HTK decoder (see Section 3.3),
where the labels are on the nodes (Fig. 2(c)). Finally,
the tree of Fig. 2(d), also in the HTK format, is derived
from the graph.

If the surnames in Fig. 2 had multiple pronuncia-
tions, they would be treated as different words by the
algorithm. Using the above network reduction method,
we get an equivalent but more compact network, which
results in faster search. In both the tree and the graph
several words have a common path, thus recognition
is substantially accelerated in comparison to the full-
form network, when the same recognizer is used in all
networks. Furthermore the graph is more compact than
the tree since common suffixes are also merged.

3.2. Structure of Phonological Rules

The structure of the rules is as follows:

L1, L2, . . . , Lk, S, R1, R2, . . . , Rn

where Li i = 1, . . . , k is the left context of the rule,
S is the class, which includes phonemes or phoneme
combinations that could be interchanged, and Rp p =
1, . . . , n is the right context of the rule. The values of
k and n could vary according to the language and the
way the designer of the rules has decided to form them.
Each Li or Rp is a class of phonemes or phoneme com-
binations that could substitute one another as context
of the central part of the rule S. In our experiments we
have selected k = 1 and n = 3, which means that we
look at only one class of phonemes or phoneme com-
binations backwards and three forward. Nevertheless,
the processing algorithm is parametric and could work
for any values of k and n.

There are three types of rules: substitution, insertion
and deletion rules. The following rule is a substitution
rule in which g and k are interchanged (k = 1 and
n = 3):

-, g k, #w, NULL, NULL (Rule 1)

where NULL stands for any step not considered by the
rule and the dash for an empty string. Rule 1 states that g
can be interchanged with k, when no phoneme precedes

them and when they are followed by any phoneme or
phoneme combination contained in cluster #w. The
first character of a cluster symbol is always # to avoid
conflicts when characters are used both as phonemes
and cluster names. We are not interested in what fol-
lows after #w and that is what the 2 NULL symbols
denote in Rule 1. Cluster #w is defined as

#w = (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o,

p, q, r, s, t, u, v, w, x, y, z, -)

that is, #w includes all the letters of the English alpha-
bet plus the dash. Note that not all letters are used as
phoneme symbols but here we have included all of them
in cluster #w to stress the fact that we are indifferent
to what follows after g or k. The dash is used when we
are at the beginning of a word’s phonetic transcription
(left context) or at the end (right context). The use of
clusters prevents us from having too many rules, e.g.,
-, g k, a or -, g k, e etc.

In the same way we have the following rule:

#w, tsi ts, #w (Rule 2a)

That is tsi and ts are interchanged in all cases regardless
of what precedes or follows. If we used k = 2 then the
previous rule could be transformed to

NULL, #w, tsi ts, #w (Rule 2b)

or

#w, ts, i-, #w (Rule 2c)

Rule 2 may be considered as a deletion rule if we
have tsi and we replace it with ts or as an insertion
rule in the opposite case, that is when we have ts and
we replace it with tsi. The above example shows that the
values of k and n depend on both the language and the
decisions made by the designer of the rules regarding
their structure.

Another option in the rules’ structure is depicted in
the following example:

#w-, r (#v1)k rk, #w (Rule 3)

where

#w- = (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r,

s, t, u, v, w, x, y, z)

and

#v1 = (a, e, i, o, u)
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Rule 3 says that rk can be interchanged with rak, rek,
rik, rok, or ruk in a specific context. Rule 3 is considered
as deletion or insertion rule according to the input sub-
string, which activates the rule. The left context is class
#w-, which means that any phoneme could precede
a phoneme or phoneme combination included in the
central part of the rule, apart from the empty string. That
is, the rule is not applied when we are at the beginning
of a word’s phonetic form. The right context is class
#w, which means that any phoneme can follow. Cluster
#v1 contains all the vowels. However, this leads to rare
combinations. That is, rak cannot be mistaken for rk
easily. Nevertheless sometimes we prefer to have broad
clusters so that they are not specific for one rule but not
too broad to avoid multiple invalid or rare solutions,
which will lead to increasing the system’s response
time. In the same way cluster #w in Rule 1 leads to
invalid combinations, e.g., gp but we use it to avoid
having too many different clusters and to prevent the
designer of the rules from omitting some rare cases of
phoneme combinations. That is, if the designer tried to
make clusters that would include only the appropriate
(not redundant) phonemes or phoneme combinations
for a specific context, it is very likely that s/he would
fail to consider all the cases for this particular context.

Our rules contain both phonetic and linguistic
knowledge. For example, in Rule 1 we use the pho-
netic knowledge that since g and k are both velar plo-
sives they could replace one another. On the other hand,
Rules 2 and 3 exploit the linguistic knowledge that
some phonemes or phoneme combinations could be
interchanged in a specific environment. Currently the
rules are extracted manually. However, research in de-
veloping an algorithm for their automatic extraction is
in progress. We aim at developing an algorithm for the
automatic extraction of rules, which will exploit both
the linguistic knowledge contained in phonetic tran-
scriptions of words, and the information carried in the
speech signal itself.

3.3. Decoding Process

As it has already been mentioned, the speech recognizer
we use is the HTK Hidden Markov Models toolkit.
All possible speaker utterances form a network, in
which the nodes are words or sub-words or even single
letters and the arcs represent the transitions between
nodes. Given the set of the acoustic models (HMMs),
the network and the corresponding dictionary, which

contains the phonetic transcriptions of the words, sub-
words or letters that correspond to the nodes, HTK
produces the N -best hypotheses.

In all our experiments we have used three different
types of networks together with their corresponding
dictionaries. In the first case the nodes are full surnames
(Fig. 2(a)). The corresponding dictionary contains the
monophone transcriptions of these words. Using the
above dictionary, HTK expands the word network of
Fig. 2(a) to the network of Fig. 3(a) during decoding.
Each word in the word network is transformed into
a word-end node preceded by the sequence of model
nodes corresponding to the word’s pronunciation as de-
fined in the dictionary. Monophones are expanded to
context-dependent triphones, and there is also cross-
word context expansion between the sp (short pause)
model of the START and END nodes and the models that
form the full surnames. The second case refers to the
graph-based phoneme network shown in Fig. 2(c), and
the third to the tree-based phoneme network depicted
in Fig. 2(d). Now the dictionary consists of START
and END corresponding to sp and monophones having
themselves as pronunciation. The network of Fig. 2(c)
is expanded to the one in Fig. 3(b), and the network
of Fig. 2(d) to the one in Fig. 3(c). If we compare the
networks of Fig. 3(a)–(c) it is clear that the second and
third networks are more compact and contain fewer
model nodes than the first one. However, the number
of word-end nodes increases since each monophone is
considered as a distinct word. The conducted exper-
iments described in Section 4 prove that as the size
of the vocabulary increases the total number of nodes
and links of an expanded phoneme network (tree or
graph) is getting smaller than the one of an expanded
word network. This is something expected because, in
both cases, links are merged in order to produce an
efficient network. Therefore, as word networks grow
larger we will reach a point where their equivalent
phoneme networks have fewer word-end nodes due to
the merging process. In addition, if context-dependent
triphones have been tied during training, their model
nodes are merged. This could lead to further decrease
of the phoneme network’s size. It should be noticed that
sometimes during the expansion NULL nodes must be
inserted. But even if they increase the number of nodes
and links in some cases, they do not add to the process-
ing time, as explained in the following. Graph-based
networks are more compact than the corresponding
tree-based ones, because not only prefixes are merged
as in trees, but also suffixes.
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Figure 3. The expansion of (a) the full-form word network, (b) the graph-based phoneme network, and (c) the tree-based phoneme network,
to triphone model nodes and word-end nodes.
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The Viterbi beam search algorithm traverses the ex-
panded network and estimates the acoustic probabil-
ities until it reaches a word-end node. At this point,
it combines the above probabilities with the language
modeling probability of the word in the word-end node.
In our case we do not use transition probabilities be-
tween words since each word is a monophone. Tran-
sition probabilities are only applied when the surname
sub-network is connected to the rest of the language
model. Thus, the final scores depend on only the acous-
tic probabilities and since both the word and phoneme
networks give the same sequences of models in each
path, the recognition accuracy is not affected. Although
a phoneme network (tree or graph) becomes smaller
than a full-form network only after surnames exceed
a certain number, the recognition time is improved
for all vocabulary sizes. This is explained, if we take
into account the fact that the only reason the expanded
phoneme network could have more nodes and links
than the corresponding word one, is the additional num-
ber of word-end or NULL nodes. However, the compu-
tational cost at a word-end or NULL node is very small
compared to the cost at a triphone model node, even if
we use transition probabilities between words, which
is not our case.

3.4. Processing of Phonological Rules

The algorithm that processes the rules in order to pro-
duce acoustically similar words works as follows: each
one of the solutions (input strings to our algorithm)
given by the speech recognizer is processed. Each in-
put string is traversed from the first symbol to the last
one. When a phoneme or a phoneme combination is
the same as the central symbol in the rule, then the rule
is applied and new strings are created. The pointer in
the input string moves forward as many positions as
the ones denoted by the central part of the rule. The
procedure does not stop when the condition for the ap-
plication of the first appropriate rule is met. It continues
until all possible rules are applied. An example is de-
scribed in the following. Suppose that the recognizer
has given the output kaletsias, which is the input string
to our algorithm and we have rules

#w, tsi ts, #w (Rule 4)

#w, ts tz, #w (Rule 5)

#w-, nts ts, #w (Rule 6)

-, g k, #w (Rule 7)

where

#w = (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r,

s, t, u, v, w, x, y, z, -)

and

#w- = (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r,

s, t, u, v, w, x, y, z)

Rule 4 says that tsi can be interchanged with ts in any
context. Rule 5 denotes that ts and tz can replace one
another also in any context. Rule 6 states that nts can
be interchanged with ts if the left context is not the
empty string and in any right context. Finally, accord-
ing to Rule 7, g can be replaced by k or vice versa
when g or k are first in a word. The procedure of the
rules’ application is depicted in Fig. 4. The numbers
in parentheses show the rule that is applied each time.
The input string kaletsias is traversed from left to right.
The first phoneme is k. The algorithm searches for a
rule where k is one of the central symbols. Rules 4–6
cannot be applied but Rule 7 can. Thus we have two
solutions so far:

g (A1), k (A2)

We go back to the input string. The pointer moves to
a. Again the algorithm will search for an appropriate
rule. However, no rule can be applied until the pointer
moves to t , and the resulting strings so far are:

gale (B1), kale (B2)

Now that we are in t , Rule 4 is applied and we get

galetsi (C1), galets (C2), kaletsi (C3), kalets (C4)

The pointer moves to a. We go on to find if another rule
is applicable. Rule 5 is, so we get 4 additional solutions:

galets (C5), galetz (C6), kalets (C7), kaletz (C8)

The pointer moves to i for solutions C5–C8. Again we
continue for another rule that could be applied. Rule 6
is applicable resulting in the following solutions:

galents (C9), galets (C10), kalents (C11), kalets (C12)
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Figure 4. The application of rules for the input string kaletsias.

Now the pointer is at i for solutions C5–C12, but it
was placed at a for C1–C4. Consequently we have to
store different pointers according to the positions in
the input string, where different rules are applied. In
the following the algorithm processes each one of the
12 solutions we have so far. For solutions C1–C4
the pointer is at a, and no rule can be applied un-
til we get to the end of the input string. Therefore,
we get

galetsias (D1), galetsas (D2), kaletsias (D3),

kaletsas (D4)

For solutions C5–C12 the pointer is at i and no rule
can be applied until the end of the input string. Conse-
quently, we get

galetsias (D5), galetzias (D6), kaletsias (D7),

kaletzias (D8)

galentsias (D9), galetsias (D10), kalentsias (D11),

kaletsias (D12)

Note that some solutions are identical, e.g., D1 D5 and
D10, and D3 D7 and D12. This does not constitute a
problem since the redundant strings will be discarded
before the final search in the database. That is, the sys-
tem will first look up the solutions in the lexicon of dis-
tinct surnames and discard the invalid ones. Finally, it
will search for the remaining solutions in the telephone

directory. The reason the algorithm does not search for
identical strings each time new solutions are produced
by the application of rules is in order to be as fast as
possible. Some other things have to be taken into con-
sideration, as well. If Rule 4 had the following form:

#w, ts tsi, #w (Rule 4a)

the algorithm would first find the sub-string ts. Then
it would replace it with tsi and move the pointer to i .
Therefore, instead of galetsias, galetsas, kaletsias and
kaletsas we would get galetsiias, galetsias, kaletsiias
and kaletsias. To avoid this problem, either we put in
the center of the rule the sub-strings according to their
length, or we modify the algorithm so that it takes into
account the length of the symbols.

Some rules may produce words that do not exist and
are not included in the database. It is desirable and saves
much processing time to stop extending a sub-string if
we realize that it would not lead to valid solutions. Thus,
the system looks up a solution in the lexicon of distinct
surnames if its length has exceeded the threshold of
4 symbols. If no word that begins with this sub-string
exists, the solution is abandoned. The reason we start
looking up the solutions in the lexicon only when their
length is greater than 4 is that normally it takes more
than 4 letters (phoneme symbols) to decide whether a
surname is valid or not.

Statistical processing of the list of most frequent
surnames has also produced weights for each rule.
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Suppose that we have Rules 4 and 5. We find N1 sur-
names that would be similar if we interchanged tsi and
ts in any context #w, and N2 surnames that would be
equivalent if we replaced ts with tz and vice versa in
any context #w. If N1 > N2 then Rule 1 has a greater
weight than Rule 2. The weights of the rules that have
been used to produce a solution are combined with the
confidence of the source hypothesis (the one for which
rules were applied) provided by the speech recognizer,
to give the confidence of the new solution. Thus, in the
end, after we discard the invalid solutions by looking
them up in the lexicon of distinct surnames, we have
all the valid surnames with their confidence levels, and
we are ready to search in the telephone directory.

4. Experiments

4.1. Graphs vs. Full-Forms and Trees

In order to test the efficiency of graphs compared to
full-forms and trees we used 106 different surnames
spoken by four speakers (two male and two female).
We carried out three types of experiments. In the first
type we used a full-form network like the one depicted
in Fig. 2(a), in the second a graph-based phoneme net-
work (Fig. 2(c)), and in the third a tree-based phoneme
network (Fig. 2(d)). Tests also differed in the number of
words contained in the dictionary, that is, in the size of
the full-form and phoneme networks. The performed
experiments had three goals: (1) to examine how the
number of nodes and links changes according to the
vocabulary size and prove that after a certain point it
decreases for trees and furthermore for graphs; (2) to
show in practice that recognition accuracy is retained;

Figure 5. (a) Number of nodes and links of full-forms, trees and graphs, (b) absolute recognition accuracy of full-forms, trees and graphs.

and (3) to prove that processing time decreases for all
vocabulary sizes (for trees and for graphs).

Figure 5(a) shows the number of nodes and links for
nine different vocabularies described by two numbers.
The first one is the number of distinct pronunciations,
and the second is the number of distinct surnames. The
first number is always greater than or equal to the sec-
ond one because some words are pronounced in multi-
ple ways. Figure 5(b) depicts the accuracy for different
vocabulary sizes and six pruning levels. L0 means that
there is no pruning, and the search is exhaustive. As we
go from L1 to L5 pruning increases, and more paths are
abandoned before their full search. We have used two
pruning thresholds, one for model nodes and the other
for word-end nodes. We have chosen the two thresh-
olds to be equal. The results of the tests confirm that the
accuracy is the same for full-forms, trees and graphs in
all cases, ranging from 55 correct recognitions for high
pruning and large vocabularies to 103 for small or no
pruning and small vocabularies.

In Fig. 6(a)–(d) we can see the absolute time (sec)
that is required in average for recognizing one surname
using full-forms, trees and graphs for different vocab-
ulary sizes and pruning levels. Figure 6(d) depicts the
absolute recognition time (sec) of full-forms, trees and
graphs for a vocabulary of 88,000 surnames that corre-
spond to 123,313 distinct pronunciations. The reason
we have drawn a separate chart for the absolute time of
this vocabulary size is that the scale of the vertical axis
is different from the scale of the absolute time chart for
the rest of the vocabularies. Figure 6(e)–(g) show the
relative (%) recognition time gain between full-forms
and trees, full-forms and graphs, and trees and graphs.

Pruning level L3 gives the best trade-off be-
tween accuracy and processing time. According to the
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Figure 6. Absolute recognition time of full-forms (a), trees (b) and graphs (c). Absolute recognition time of full-forms, trees and graphs for the
vocabulary of 123313 surnames (d). Relative recognition time gain between full-forms and trees (e), full-forms and graphs (f), trees and graphs (g).
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experiments, when trees or graphs are used, if we select
a word-end pruning threshold higher than the model
one, accuracy drops (maximum 8% for large vocabu-
laries). This is explained by the fact that each word is
equivalent to a model, thus a greater pruning thresh-
old for word-end nodes entails an increased pruning
threshold for model nodes, even if the model pruning
threshold is smaller. It should also be noted that experi-
ments showed that if the word-end pruning threshold in
full-form networks is greater than the word-end prun-
ing in phoneme networks, while both network types
have the same model pruning threshold, we get the
same accuracy. In this case one would expect that since
pruning increases for word networks, time would de-
crease. This is true, but it still remains significantly
greater than the processing time of phoneme networks
that have smaller pruning thresholds. Thus, even if we
need smaller pruning thresholds in phoneme networks
to get the same accuracy we have in word networks
with higher pruning thresholds, recognition time in
phoneme networks (tree-based or graph-based) is still
significantly smaller. The above observation justifies
the efficiency of using trees and graphs. As a general
conclusion, the larger the vocabulary, the higher the
absolute recognition time is, for every pruning level.
Moreover, the absolute recognition times and the rela-
tive recognition time gains decrease as the pruning level
gets higher for all vocabulary sizes. This is not always
true for the relative time gain. The curves for the relative
time gain are not always descending, which is explained
by the fact that the time values have been rounded in
some cases, something that can cause divergence in the
final percentages, because we deal with very small time
intervals.

4.2. The Effect of Phonological Rules
on Recognition Accuracy

Field tests were carried out with 110 people to evaluate
the performance of the automatic directory informa-
tion system as a whole. The 76 males called the system
381 times, and the 34 females 123 times. These people
were chosen to cover different ages, dialects and edu-
cation levels. By that time there was also improvement
in the acoustic models, which led to better recognition
rates compared to the ones we had during the evaluation
of full-forms, trees and graphs. The surname recogni-
tion accuracy without applying rules was 70.85%. The
speech recognizer produced only the best hypothesis
(N = 1).

Table 1. Surname recognition accuracy for different values of N
(in the N -best hypotheses’ list), with and without the application of
phonological rules.

Male (%) Female (%) Total (%)

Without phonological rules

N = 1 159/69.13 98/70.00 257/69.46

N = 3 162/70.43 98/70.00 260/70.27

N = 5 163/70.87 100/71.43 263/71.08

N = 10 168/73.04 102/72.85 270/72.97

N = 15 172/74.78 104/74.28 276/74.59

N = 20 179/77.82 108/77.14 287/77.56

N = 25 186/80.86 112/80.00 298/80.54

N = 30 191/83.04 116/82.85 307/82.97

With phonological rules

N = 1 195/84.78 119/85.00 314/84.86

N = 3 200/86.95 121/86.43 321/86.75

N = 5 202/87.82 123/87.85 325/87.83

N = 10 207/90.00 127/90.71 334/90.27

In order to evaluate the recognition performance
after the application of phonological rules, new tests
were carried out. Thus, 37 people (23 male and 14 fe-
male) uttered 10 different surnames each, that is, we
had 370 surnames to be recognized in total. We ex-
perimented with different values of N , both with and
without phonological rules. The results are depicted in
Table 1. In each cell the first value shows the abso-
lute number of correct recognitions and the second the
corresponding percentage.

If we do not use phonological rules, the best results
are given when the recognizer produces the 30 best
hypotheses. However, in this case the response time
is quite increased, which necessitates a lower value of
N . We have not kept record of the response time in all
these tests. Nevertheless, it was obvious that the system
stopped being real-time with N greater than 3 because
the computational cost became too high. When we
applied phonological rules, we realized that N = 1 was
enough to produce better results than N = 30 (with no
phonological rules), with no significant computational
cost. This was due to the fact that the cost of processing
the signal in order to produce multiple outputs is much
higher than the time required for taking an output
and applying the phonological rules. Moreover, the
application of rules leads to significantly more than 30
solutions, which have the advantage of being based on
language dependent data (not just the acoustic signal).
Thus, the probability of including the correct surname



Large Vocabulary Search Space Reduction 369

is higher. The results are even better when we have
N = 10 and use phonological rules. However, in this
case, as for N = 10 without rules, the response time is
not very good. In conclusion, N = 3 with phonological
rules is the solution that combines good recognition
accuracy and real-time response. In total, there were
52 rules, which is a high number if we consider that the
rules’ structure allows for including many cases in the
same rule by using classes. At first, we had 95 rules,
but the processing time was prohibitive for real-time
applications, with no gain in accuracy because most
of the rules covered very rare cases. Thus, we decided
to keep only the ones that covered the most fre-
quent interchanges between phonemes and phoneme
combinations.

5. Summary and Conclusions

In this paper we described two methods aiming at re-
ducing the search space in large vocabulary speech
recognition. First, we used DAWG structures in order to
replace word networks with phoneme networks in such
a way that all the possible paths of the phoneme net-
works produce the phonetic transcriptions of the words
in the word networks. The DAWGs were transformed
to graphs in the format expected by the decoder, where
the labels were on the nodes instead of the arcs. To
test the efficiency of our method we compared full-
form networks, trees and graphs under the same con-
ditions (using the same decoder and vocabularies). We
proved that the size of trees and graphs is reduced af-
ter a certain point compared to full-form networks and
that recognition accuracy is retained while processing
time decreases significantly for all vocabulary sizes,
and especially for larger ones. It was also shown that
graphs are more compact than trees and lead to smaller
recognition times. The aim of the second technique was
to refine the N -best hypotheses’ list provided by the
speech recognizer by applying phonological rules. The
performed experiments showed that the application of
phonological rules results in better recognition accu-
racy compared to the cases for which no rules were
applied, for the same value of N or even when N is
smaller in the first case. That is, the accuracy for N = 1
when rules are applied is better than the accuracy for
N = 30 without rules. Moreover, the computational
cost is much smaller, which leads to real-time response
without sacrificing accuracy. Both methods were ap-
plied to surname recognition in an automatic directory
information system.

Currently, the rules are formed manually, so our fu-
ture work focuses on developing an algorithm for their
automatic extraction that will exploit both linguistic
and acoustic knowledge. In this way, we expect that
we will cover cases not captured by the human de-
signer using rules that are recognizer-dependent, while
at the same time completely automating the process.
Further experiments will be carried out concerning the
optimization of the trade-off between recognition ac-
curacy and response time.
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