FAST VERY LARGE VOCABULARY RECOGNITION BASED ON
COMPACT DAWG-STRUCTURED LANGUAGE MODELS

K. Georgila, K. Sgarbas, N. Fakotakis, G. Kokkinakis

Wire Communications Laboratory
Electrical and Computer Engineering Dept.
University of Patras, Greece
{rgeorgil, sgarbas, fakotaki, gkokkin}@wcl.ee.upatras.gr

ABSTRACT

In this paper we present a method for building compact lattices
for very large vocabularies, which has been applied to surname
recognition in an Interactive telephone-based Directory
Assistance Services system'. The method involves the
construction of a non-deterministic DAWG, which is eventually
transformed into a phoneme lattice in Entropic’s HTK
Application Programming Interface (HAPI) format. Incremental
construction functions are used for the creation and update of
the DAWG, whereas an algorithm for converting the DAWG
into the HAPI format is presented. Furthermore, trees, graphs
and full-forms (whole words with no merging of nodes) are
compared in a straightforward way under the same conditions,
using the same decoder (HAPI MVX) and the same
vocabularies. Experimental results showed that as we go from
full-form lexicons to trees and then to graphs the size of the
recognition network is reduced and therefore the recognition
time too. However, recognition accuracy is retained since the
same phoneme combinations are involved.

1. INTRODUCTION

In applications such as automatic directory information services,
a speech recognizer is expected to be able to handle very large
vocabularies. Moreover, in most applications these vocabularies
are expected to be “open-set lexicons” meaning that more
words, e.g. surnames, first names, city names etc., may need to
be added later. Therefore, an efficient method able to cope with
the above constraints should provide a real-time search
operation over the whole vocabulary structure and a means of
easy vocabulary augmentation.

Most speech recognition systems that have to deal with very
large vocabularies, use a tree structure (i.e. trie) for the word
lexicon in order to restrict the search space. By sharing phones
across different words (as opposed to using a separate instance
for every phone in the pronunciation of each word), the lexical
tree provides a compact representation of the acoustic-phonetic
search space, as well as a mechanism to efficiently handle
multiple pronunciations of the same word. However, trees are
not the optimal way to represent lexicons, due to their
inadequacy to exploit common word suffixes. For this reason,
the use of DAWG (Directed Acyclic Word Graph) structures is
more appropriate. A DAWG is a special case of a finite-state
automaton where no loops (cycles) are allowed. It has a “start”

" The EU Project LE-48315, IDAS.

and an “end” node and all possible paths between them form the
words of the lexicon. DAWG structures have been successfully
used for storing large vocabularies in speech recognition.
Hanazawa et al. [1] used an incremental method [2] to generate
deterministic DAWGs. The aforementioned method was applied
on a 4000-word vocabulary in a telephone directory assistance
system. However, in [1] the comparison between the tree and
the DAWG was made using different decoding algorithms. Thus
the efficiency of the DAWG was not shown under the same
conditions.

In this paper we also use incremental construction of DAWGs
in order to be able to update them without having to build them
from scratch in every change. We have used the incremental
construction algorithms described in [3] because we are
particularly interested in non-deterministic DAWGs since they
appear to be even more compact than the minimal deterministic
ones [4],[3]. After the DAWG is constructed it is converted to a
lattice in the format that the decoder expects, where the labels
are on the nodes instead of the arcs. In addition, we compare the
use of trees, graphs and full-forms (whole words with no
merging of nodes) in a straightforward way under the same
conditions, using the same decoder (Entropic’s HAPI MVX)
and the same vocabularies. In our application, the EU Project
IDAS, the recognizer must distinguish between 257,198 distinct
surnames that correspond to 4,597,382 entries in the directory of
the Greek Organization of Telecommunications. By restricting
the search space to the most frequent 100,000 ones, 93.66% of
the directory’s listings is covered. The use of DAWGs proves to
reduce recognition time significantly without affecting
accuracy. The efficiency of the algorithm becomes more evident
as the size of the vocabulary increases. The idea is general and
works in any case where the target is to find the best hypothesis
among a great number of words.

The paper is organized as follows: The lattice construction
method is explained in Section 2. Section 3 describes how the
decoder processes the word and phoneme lattices and explains
why recognition accuracy is retained while time decreases.
Results of performed experiments are given in Section 4.
Finally, a short summary and some conclusions are given in
Section 5.

2. LATTICE CONSTRUCTION

A word lattice consisting of surnames is replaced by a phoneme
lattice that can produce the phonetic transcriptions of all the
above surnames (Figures 2a, 2d). Thus, a lexicon of surnames in
phonetic transcription (Figure 2a), is first transformed into a

Directed Acyclic Word Graph (DAWG) (Figure 2c). There are
several types of equivalent DAWGs that can be produced from
a set of strings using different algorithms. Since in this stage we
wish to have the most compact structure, we choose to build a
non-deterministic DAWG using the incremental algorithm
described in [3] because the resulting DAWG proves to be even
more compact than the corresponding minimal deterministic one
[4],[3]. In this way new words can be inserted in the DAWG
without building and minimizing it from scratch.

create a starting lattice-node P[start]

for every DAWG-link L[i] with label A {
create a new lattice-node P[i]
assign label A to P[i]

}

create an ending lattice-node P[end]

let N[start] = the starting DAWG-node
for every DAWG-link L[i] leaving N[start] {
create a new lattice-link T[i] from P[start] to lattice-node P[i]

}
let N[end] = the ending DAWG-node
for every DAWG-link L[i] entering N[end] {
create a new lattice-link T[i] from lattice-node P[i] to P[end]
}

for every DAWG-node N[k] except the N[start] and the N[end] {
for every DAWG-link L[i] entering N[k] {
for every DAWG-link L[j] leaving N[k] {
create a new lattice-link T[r] from lattice-node P[i] to P[j]
Phd
Figure 1: A straightforward procedure that transforms the
DAWG into the HAPI lattice format.

Our algorithm produces the DAWG of Figure 2¢, where simple
monophone pronunciations label the transitions between nodes.
The next stage of the method is to convert these structures into
the format that is accepted by the HAPI decoder (see Section 3),
where the labels are on the nodes (Figure 2d). This conversion
is not trivial, i.e. we cannot just convert the transitions to nodes
and vice-versa retaining the topology of the lattice, considering
that some transitions with similar labels may

Figure 2: (a) Word lattice, (b) HAPI’s tree-based lattice, (c)
DAWG produced by our incremental algorithm, (d) DAWG-
based lattice produced by our straightforward procedure.

enter or leave the same nodes. For the conversion we have used
the procedure of Figure 1, which (although it does not result to
the most compact representation) produces correct lattices
giving impressive results as shown in Section 4.

Figure 2 shows how the algorithm works for 6 surnames. The
first network is a word lattice in the HAPI format, where each
node corresponds to a surname. The second network is the tree
produced by HAPI and the third network is the DAWG created
by our incremental algorithm while the fourth one is the
transformed DAWG into the HAPI format. If the surnames in
Figure 2 had multiple pronunciations, they would be treated as
different words by the algorithm. Using the above lattice
reduction method, we get an equivalent but more compact
lattice, which results to faster search. In both the tree-based and
DAWG-based lattices several words have a common path, thus
recognition is substantially accelerated in comparison to the
word lattice, when the same recognizer is used in all lattices. In
addition the DAWG-based lattice is more compact than the tree-
based one since common suffixes are also merged.

3. DECODING PROCESS

The speech recognizer we used is Entropic’s HTK Application
Programming Interface (HAPI). All the possible speaker
utterances form a network defined using the HAPI Standard
Lattice Format (SLF). An SLF network is a text file, which
contains a list of nodes representing words or sub-words or even
single letters and a list of arcs representing the transitions
between nodes. Given the set of the acoustic models (HMMs),
the SLF file and the corresponding dictionary, which contains
the phonetic transcriptions of the words, sub-words or letters
included in SLF, HAPI produces the N-best hypotheses.

In all our experiments we have used three different types of SLF
networks together with their corresponding dictionaries. In the
first case the nodes are full surnames. E.g. in Figure 2a the word
lattice consists of 6 words. The corresponding dictionary
contains the monophone transcriptions of these words. During
decoding the HAPI expands the word lattice of Figure 2a to the
network of Figure 3. Each word in the word lattice is
transformed into a word-end node preceded by the sequence of
model nodes corresponding to the word’s pronunciation as
defined in the above dictionary. Monophones are expanded to
context-dependent triphones and there is also cross-word
context expansion between the sil model of the START and
END nodes and the models that form the full surnames. The
second type of SLF file gives the structure of the tree-based
phoneme network depicted in Figure 2b and the third one
describes the DAWG-based phoneme network shown in Figure
2d. Now the dictionary consists of START and END
corresponding to sil and monophones having the same
pronunciation. The network of Figure 2b is expanded to the one
in Figure 4, and the network of Figure 2d to the one in Figure 5.
If we compare the networks of Figures 3, 4 and 5 it is clear that
the second and third networks are more compact and contain
fewer model nodes than the first one. However, the number of
word-end nodes increases since each monophone is considered
as a distinct word. The conducted experiments described in
Section 4 prove that as the size of the vocabulary increases the

Figure 3: The expansion of the word lattice to triphone model
nodes and to word-end nodes.

Figure 4: The expansion of the tree-based phoneme lattice to
triphone model nodes and word-end nodes (monophones).

total number of nodes and links of an expanded phoneme lattice
(tree-based or DAWG-based) is getting smaller than the one of
an expanded word lattice. This is something expected because
in both cases, links are merged in order to produce an efficient
network. Therefore, as word lattices grow larger we will reach a
point where their equivalent phoneme lattices have fewer word-
end nodes due to the merging process. In addition, if some
context-dependent triphones have been tied during training,
their model nodes are merged. This could lead to further
decrease of the phoneme lattice’s size. It should be noticed that
sometimes during the expansion NULL nodes must be inserted.
But even if they increase the number of nodes and links in some
cases they do not add to the processing time as explained in the
following. DAWG-based lattices are more compact than the
corresponding tree-based ones since not only prefixes are
merged as in trees, but also suffixes.

The Viterbi beam search algorithm traverses the expanded
network and estimates the acoustic probabilities until it reaches
a word-end node. At this point, it combines the above
probabilities with the language modelling probability of the
word in the word-end node. In our case we don’t use transition
probabilities between words. Thus, the final scores depend only
on the acoustic probabilities and since both the word and
phoneme networks give the same sequences of models in each

Figure 5: The expansion of the DAWG-based phoneme lattice
to triphone model nodes and to word-end nodes (monophones).

path, the recognition accuracy is not affected. Although a
phoneme lattice (tree or DAWG) becomes smaller than a word
lattice only after surnames exceed a certain number, the
recognition time is improved for all vocabulary sizes. This is
explained, if we take into account the fact that the only reason
the expanded phoneme lattice could have more nodes and links
than the corresponding word one, is the additional number of
word-end or NULL nodes. However, the computational cost at a
word-end or NULL node is very small compared to the cost at a
triphone model node even if we use transition probabilities
between words, which is not our case.

4. PERFORMED TESTS

In order to test the efficiency of our proposed method we used
106 different surnames spoken by 4 speakers (2 male and 2
female). We performed three types of experiments. In the first
type we used a word network like the one depicted in Figure 3,
in the second a tree-based phoneme network (Figure 4) and in
the third one a DAWG-based phoneme network as the one in
Figure 5. Tests also differed in the number of words contained
in the dictionary, that is in the size of the word and phoneme
networks. The performed experiments had three goals. Firstly to
examine how the number of nodes and links changes according
to the vocabulary size and prove that after a certain point it
decreases for tree-based and furthermore for DAWG-based
lattices. Secondly, to show in practice that recognition accuracy
is retained and thirdly to prove that processing time decreases
for all vocabulary sizes (for trees and furthermore for DAWGs).

Figure 6 shows the number of nodes and links for 9 different
vocabularies described by 2 numbers. The first one is the
number of distinct pronunciations and the second is the number
of distinct surnames. The first number is always greater than or
equal to the second one since some words are pronounced in
multiple ways. In Figures 7 and 8 we can see the recognition
time gain in seconds between word networks and trees, and
trees and DAWGs, respectively. The time gain is shown for 6
different pruning levels and the 9 different vocabulary sizes
mentioned above. LO means that there is no pruning and the
search is exhaustive. As we go from L1 to L5 pruning increases
and more paths are abandoned before their full search. We have
used two pruning thresholds one for model nodes and the other
for word-end nodes. We have chosen the two thresholds to be
equal. The results of the tests confirm that the accuracy is

1200000 - f
1000000 ?
// —o— Nodes-W

800000

// —m— Nodes-T
600000 A—NodesD
400000

—e— Links-W
—*— Links-T

—e—Links-D

200000

L

0

138 (106) o
396 (300)

677 (500) |
1305 (1000)
3892 (3000)
6728 (5000)
10478 (8000)
13279 (10319)
123313(100087)

Figure 6: The number of nodes and links (y-axis) for the word
(W), tree-based (T) and DAWG-based(D) phoneme lattices in
connection with the vocabulary size.

50

45 —e—138 (106) |
w0 —m— 396 (300)
—a— 677 (500)
= 35 —5— 1305 (1000)
2 30 \ —%— 3892 (3000)
€ N —o— 6728 (5000)
3 2 — 10478 (8000)
g 20 ——13279(10319) |———
F s N 123313(100087)
° *\x\\‘\'—*
0 —— 2 % %

Pruning Level

Figure 7: The recognition time gain in seconds between word
lattices and trees (6 pruning levels, 9 vocabulary sizes).

40
138 (106)
» —e—138(106)
—=— 396 (300)
30 —a— 677 (500) L
—%— 1305 (1000)
s —%—3892(3000) [
3
< —o— 6728 (5000)
) E——
<] —+— 10478 (8000)
@
5 —— 13279 (10319)
E 15 N (10619
123313(100087)
) \\\\
| x\\;\\\‘;‘\
0 e ———o—— £ 2
Lo & 2 L3 L4 L5
Pruning Level

Figure 8: The recognition time gain in seconds between trees
and DAWGs (6 pruning levels, 9 vocabulary sizes).

retained in all cases ranging from 64 correct recognitions for
high pruning and large vocabularies to 103 for small or no
pruning and small vocabularies. Pruning level L3 gives the best
trade-off between accuracy and processing time. According to
the experiments, when trees or DAWGs are used, if we select a
word-end pruning threshold higher than the model one,

accuracy drops (maximum 8% for large vocabularies). This is
justified by the fact that each word is equivalent to a model, thus
a greater pruning threshold for word-end nodes entails an
increased pruning threshold for model nodes even if the model
pruning threshold is smaller. It should also be noticed that
experiments showed that if the word-end pruning threshold in
word lattices is greater than the word-end pruning in phoneme
lattices, while both lattice types have the same model pruning
threshold, we get the same accuracy. In this case one would
expect that since pruning increases for word lattices, time would
decrease. This is true but it still remains significantly greater
than the processing time of phoneme lattices that have smaller
pruning thresholds. Thus even if we need smaller pruning
thresholds in phoneme lattices to get the same accuracy we have
in word lattices with higher pruning thresholds, recognition time
in phoneme lattices (tree-based or DAWG-based) is still
significantly smaller. The above observation justifies the
efficiency of using trees and furthermore DAWGs.

5. SUMMARY AND CONCLUSIONS

In this paper we presented an algorithm for reducing the size of
word lattices by replacing them by phoneme ones, in such a way
that all the possible paths of the phoneme lattices produce the
phonetic transcriptions of the words in the word lattices. Our
algorithm produces DAWG-based networks. In order to test the
efficiency of our method we have conducted experiments and
have compared networks based on full-formed words, trees and
DAWGs under the same conditions (using the same decoder and
vocabulary). We have proved that the size of trees and DAWGs
is reduced after a certain point compared to the word lattices
and that recognition accuracy is retained while processing time
decreases significantly for all vocabulary sizes. It has also been
shown that DAWG-based networks are more compact than tree-
based ones and lead to smaller recognition times. In our
experiments we have used context-dependent triphones and
lattices containing only surnames, but the algorithm could work
efficiently for other models too, such as syllables, and for
lattices that consist of surnames with their context.

6. REFERENCES

1. Hanazawa K., Minami Y., and Furui S., “An efficient
search method for large-vocabulary continuous-speech
recognition”, [CASSP 97, pp. 1787-1790, Munich,
Germany.

2. Aoe J., Morimoto K., and Hase M., “An algorithm of
compressing common suffixes for trie structures”,
Trans. IEICE, Vol. J75-D-1I No. 4, April 1992, pp. 770-
799.

3. Sgarbas K., Fakotakis N., and Kokkinakis G., “Two
algorithms for incremental construction of directed
acyclic word graphs™, International Journal on Artificial
Intelligence Tools, Vol. 4, No. 3, pp. 369-381, 1995.

4. Sgarbas K., Fakotakis N., and Kokkinakis G., “Optimal
Insertion in Deterministic DAWGSs”, Submitted to
Theoretical Computer Science, Elsevier.

