BUILDING STOCHASTIC LANGUAGE MODEL NETWORKS
BASED ON SIMULTANEOUS WORD/PHRASE CLUSTERING

Kallirroi Georgila, Nikos Fakotakis, George Kokkinakis

Wire Communications Laboratory
Electrical and Computer Engineering Dept.
University of Patras, Greece
{rgeorgil, fakotaki, gkokkin}@wcl.ee.upatras.gr

ABSTRACT

In this paper we present a novel method for creating stochastic
networks for language modelling in spoken dialogue systems.
This is accomplished by taking a set of sentences (created
manually, derived from simulation experiments, from using the
system itself, the application grammar, or a combination of
these methods), and training a Hidden Markov Model (HMM),
which incorporates all the information about the structure of
these sentences. Our technique has the great advantage that
during the creation of the HMM, classes containing words or
phrases with semantic-syntactic similarities are formed
automatically. After all the training data has been used the final
HMM is transformed to a stochastic network. The states and
observations of the HMM correspond to the word/phrase classes
and words/phrases respectively. The nodes of the stochastic
network are the word/phrase classes and the arcs are the state
transition probabilities of the HMM. The observation
probabilities of the HMM correspond to the probabilities within
the classes of the stochastic network. Our method has been
tested using data from an Interactive telephone-based Directory
Assistance Services system' and a call-routing spoken dialogue
system” and has shown the expected advantages.

1. INTRODUCTION

Statistical language models based on n-grams are broadly used
in large vocabulary speech recognition systems, e.g. in
automatic dictation applications, whereas in spoken dialogue
systems finite-state networks are employed, especially in
system-driven applications where the user’s utterances usually
do not deviate from the expectations of the current dialogue
state. Spoken dialogue systems deal with specific task-oriented
domains, where it is difficult to obtain sufficient data in order to
create robust statistical language models. Thus, finite-state
networks, are basically developed by using grammars.
However, in mixed-initiative or user-driven dialogues where the
speaker is not restricted by the dialogue structure and does not
conform to any grammatical formalism, automata perform
poorly. Therefore, it seems appropriate to combine both types of
models. Finite-state networks lead to a better word accuracy for
grammatically correct utterances whereas stochastic models are
much more robust for spontaneous speech.

In [1], a finite-state automaton and a robust stochastic model are

' The EU Project LE-48315, IDAS.
% This system is developed by the Greek company Knowledge
S.A.

combined to form a language model in the same way as
combining HMMs. Both models are represented as category
based bigrams. In [2] a back-off n-gram language model is
represented through a non-deterministic stochastic finite-state
network, which is called Variable N-gram Stochastic
Automaton (VNSA). To increase the robustness of the
estimation of transition probabilities, word classes and
compound words are used. A word class is a set of words
having semantic-syntactic similarities (e.g. the set of first
names, surnames, etc.). A compound word is a sequence of
words with very strong correlation (e.g. I'd like to, thank you,
etc.). The word classes and compound words are defined by
hand and then the training data is tagged with the labels of these
word classes and compound words.

In this paper, we propose a method for creating stochastic
networks thus retaining the advantages of both finite-state
networks and statistical language models. The main advantage
of our technique is that word/phrase classes are created
automatically during the construction of a HMM that
consequently is transformed to a stochastic network. In the
aforementioned and other existing systems, clusters are created
manually or if automatic techniques are used, the clustering
procedure is independent of the construction of the finite-state
networks or statistical n-grams. That is, networks and stochastic
models require already formed clusters in order to become more
compact and robust. Our algorithm does not require the
existence of classes but creates them automatically and
simultaneously with the construction of the stochastic network.
Consequently the adaptation of the language models to
additional data in the same domain or to another application
becomes much easier and efficient with low development costs.

The paper is organized as follows: The algorithm is described in
Section 2. In Section 3 an example of the method’s application
is given, together with experimental results. Finally, a short
summary and some conclusions are given in section 4.

2. ALGORITHM DESCRIPTION

The flow chart of our method is shown in Figure 1. At first a set
of sentences is selected to train the initial HMM. For every new
sentence S the Viterbi algorithm is activated to check whether
this sentence could be extracted by the current HMM. The
probability assigned to the sentence S is compared with a
threshold 7, which is defined for the HMM.

a. If the probability assigned to S exceeds or is equal to 7, then §
is considered to fit in the existing HMM paths. Unknown
observations, that is words or phrases, are able to match with

existing states, i.e. word or phrase clusters, and become
members of them. In this way, the clustering procedure takes
place simultaneously with the construction of the HMM. Taking
into consideration the modified clusters and sentences that are
subsets of S, the HMM is updated. That is, the observation
probabilities within the existing states (clusters) are reestimated
and new states may be added (for the parts of sentences that
cannot match with existing states). Subset sentences of S are the
sentences, all the words of which are contained in sentence S.
Thus S is included in its subsets. b. If the probability assigned to
S is smaller than 7, the already existing states (clusters) are not
updated, but new ones are created to incorporate the subset
sentences of S into the HMM. In either case (a) or (b), a new
threshold for the updated HMM is estimated and replaces 7.
Then a new sentence is selected, the probability of which is
going to be compared with the updated threshold. The
procedure iterates until no more sentences are available.
Throughout the iterations, phrases are formed (taking into
consideration syntactic and semantic restrictions), during each
sentence’s processing, that is before Viterbi is applied.

Selection of S
Extraction of subset
sentences of S
Creation of
initial HMM
Definition of T

Selection

Candidate
assignment
(o clusters,

Yes
Update of
clusters
Extraction of subset
sentences of S

Update of

HMM
Definition of T

Figure 1: The flow chart of the algorithm.

After the final HMM has been constructed, it is transformed to a
stochastic network. The nodes of the network are the
word/phrase classes, i.e. the states of the HMM and the arcs are
the state transition probabilities of the HMM. The observation
probabilities of the HMM correspond to the probabilities within
the classes (sub-networks) of the stochastic network. The
algorithm is explained in detail in the following.

2.1. Training data

A set of sentences is used as training data. These sentences can
be derived from simulation experiments, from the system itself,
from the application grammar, be manually created or be
produced by a combination of these methods.

2.2. HMM definition

The type of the HMM we use is discrete as defined in [3]. If a
word/phrase follows another word/phrase the transition
probability a;; between their classes that is the HMM states i and
J is greater than zero, otherwise it is equal to zero. In cases
where a; # 0, two types of transition probabilities are
considered: transitions with equal probability from one state to
another or probabilities derived from the number of times a
word/phrase class appears after another. To be more precise, if a
word/phrase class u is followed by n» word/phrase classes in the
training data, then the probability that a word/phrase class w
occurs after the word/phrase u, in the case of equal probabilities,
would be P(w | u)=I / n (1). On the other hand, if the number of
times class w follows u is considered, then P(w | u) = N(u, w) /
N(u) (2) where N(u, w) is the number of occurrences of class w
after class u and N(u) the number of occurrences of class u. In
the same way, observations, i.e. words/phrases can have equal
probabilities within a state (class), or the probabilities are
formed according to the frequency of occurrence of the
words/phrases. In the former case if a word/phrase w belongs to
a class C(w), which has n» members, then the probability of this
word/phrase in the class is P(w | C(w)) =1/ n (3). In the latter
case P(w | C(w)) = Nw) / N(C(w)) (4) where N(w) is the
number of occurrences of word/phrase w and N(C(w)) the
number of occurrences of class C(w).

2.3. Initialization

The longest sentence S is selected, that is the one with the
biggest number of words/phrases, which will be used together
with its subset sentences to train the initial HMM. In this way it
is ensured that the initial HMM will have as many states as
possible and it would be more likely for a new sentence to fit in
an existing path than add new states to the model. If not the
longest sentence were selected but a medium or small length
one, then the initial HMM would have fewer states and
observations. Thus a sentence that would be a superset of the
one upon which the HMM has been trained, would fail to match
with the existing paths and new states would be added, although
these states could match with already existing ones.

The number of states &, in the initial HMM, is equal to the
number of words/phrases of S. The number of observations M is
equal to N+]/. The redundant observation stands for any
unknown word/phrase. Transition and observation probabilities
are estimated using equations (1)-(4). The observation of the
unknown word/phrase has a probability of 0.000001 in all
states. The reason that 0.000001 is used instead of 0 is to avoid
overflows in computations. The initial state probability 7 is 1
only when i is the enter state and 0 for all other states.

After the initial HMM has been built, our next step is the
definition of 4 decision thresholds that will be used to decide if

a new sentence will fit in an existing path or create a path of its
own. The 4 thresholds correspond to the occurrence of 0, 1, 2
and 3 unknown words/phrases respectively. Only 4 thresholds
are considered because if a new sentence has more than 3
unknown words/phrases it is more likely that it will fail to
follow an existing path. The procedure for the thresholds’
definition is as follows. The Viterbi algorithm finds the optimal
state sequence that produces the longest sentence S. The
resulting probability is considered as the first threshold. One of
the observations in the above sequence is replaced by the
unknown word/phrase observation. In the same way the Viterbi
algorithm gives the second threshold for sentences that contain
one unknown word/phrase. By replacing two or three
observations with the unknown word/phrase observation, the
third and fourth thresholds are defined.

2.4. Iterative procedure

The longest sentence of the remaining sentences is selected and
transformed into an observation sequence. The Viterbi
algorithm again finds the optimal state sequence with the
corresponding probability. According to the number of
unknown observations the above probability is compared with
one of the 4 thresholds. If it exceeds or it is equal to the
appropriate threshold 7" then the new observation can match
with one of the existing states (classes), and become a member
of this class. In order to find the candidate matches the
observation and state sequences (derived from the Viterbi
algorithm) must be compared. It should be noted here that if we
want to compare similar things, we must replace observations
with the states (classes) where they belong and then compare
this state sequence with the state sequence extracted by Viterbi.

In order to ensure that an observation will not match to a class
by mistake, the algorithm gets all the training sentences that
contain this observation and computes their probabilities using
Viterbi. If the probabilities are greater than or equal to the
appropriate threshold, and if the unknown observation matches
with the same state in the greatest portion of the training
sentences, which contain these observations, e.g. more than
70%, it is considered that the observation can become a member
of the class. This check is performed by comparing the
observation and state sequences (derived from the Viterbi
algorithm). Again the observations must be replaced by the
states (classes) where they belong and then compared with the
state sequence extracted by Viterbi. The above percentage (e.g.
70%) is set empirically. Higher values lead to very strict clusters
and more states, while lower ones are responsible for loose
clusters and fewer states. If the check fails, the procedure is
continued in the same way as if the probability had not
exceeded the threshold in the first place.

So if the probability is greater than or equal to the appropriate
threshold and it has been found that unknown observations
match with existing states in e.g. more than 70% of the
sentences, the HMM is updated as follows. All the sentences
that have been used so far together with the new sentence S
(which caused the match) and the subset sentences of S form a
set for training the HMM. The number of states remains the
same if all the unknown words/phrases of S are clustered to

existing states, or one state is added for every unknown
word/phrase that cannot match with an existing state. The
number of unknown words/phrases is added to the previous
number of observations to give the current number of
observations in the HMM. Transition and observation
probabilities are reestimated according to equations (1)-(4)
taking into account the new data and clusters. On the other
hand, if the probability does not exceed 7' or no unknown
word/phrase matches with an existing state for e.g. more than
70% of the sentences, then the unknown words/phrases are
considered as new states of the HMM. Again the new data is
used for updating the HMM parameters.

After the new HMM has been constructed the longest of the
remaining sentences is selected and the steps described above
are repeated. The procedure stops when there are no other
training sentences.

2.5. Stochastic network construction

The states and observations of the HMM correspond to
word/phrase classes and words/phrases respectively. The
stochastic network has word/phrase classes as nodes, which are
connected with arcs denoting the state transition probabilities of
the HMM. The observation probabilities of the HMM
correspond to the probabilities within the classes of the
stochastic network. During the HMM training, information
about the correspondence of the vocabulary words to the
observations of the HMM and the contents of the clusters
(states), is stored. Thus the stochastic network can be derived
from the final HMM.

3. EXAMPLE AND RESULTS

In order to test and improve our method we have used data from
the EU project IDAS and a call-routing spoken dialogue system
developed by Knowledge S.A. A simplified example is given to
clarify the algorithm, in the dialogue state where the user asks
for a person in a call-routing system. For simplicity only word
classes and not phrase ones are considered. An indicative name
X is used. The example is given in English so that it is better
understood. In Figure 2a a manually created network is
depicted. This network is compared to the one created
automatically by our method. We consider as training sentences
all the paths of the manually created network.

The sentence with the greatest number of words is extracted:
enter | would like to speak to X if that is ok exit (Sentence 1).
The subset sentences of Sentence 1 are: enter I would like to
speak to X exit, enter X if that is ok exit, enter X exit, enter if
that is ok I would like to speak to X exit, enter if that is ok X exit.
This set of sentences is used for training the initial HMM. The
number of states is equal to the number of words, that is 13 and
the number of observations is 14. Each word is associated with
an observation (e.g. the word would with observation /2). The
14th observation stands for unknown words. By replacing the
words in sentence 1 with their corresponding observations in the
HMM we get: 1 3126108 11 13495 7 2. It should be noted
that the 2 occurrences of the word fo are considered as 2
observations. If we replace 1, 2 or 3 observations with the

(a)

must communicate with

Figure 2: Word networks, (a) manually created and (b) derived
from our method.

unknown observation 14 we get the 3 following sequences that
are used as input by the Viterbi algorithm to estimate the
thresholds for 1, 2 and 3 unknown words: / 3 126 10 14 11 13
49572 (first), 13126101414134957 2 (second), I 312
6101414 14495 7 2 (third). The unknown observation could
have equally well replaced other observations. That is, the
positions of the replacements are not important. In this way, the
initial HMM is created and the 4 thresholds are estimated. The
next step of the method is to select the longest sentence from the
remaining ones: enter I must communicate with X if that is ok
exit (Sentence 2). We transform the above sentence to a
sequence of observations and count the number of unknown
observations so that the appropriate threshold is set: / 3 14 14
14 13 4 9 5 7 2. In this case we have only 3 unknown
observations. The Viterbi algorithm gives that the above
observation sequence is extracted from the HMM with a
probability greater than the threshold set for 3 unknown
observations and suggests the 4th and 5th observations as
candidates for matching with states 8 and 11 respectively. Note
that in order to do the matching the Viterbi makes some shifts
since sentence 1 has 13 observations and sentence 2 only 11. To
ensure that this matching does not happen by mistake, we take
all the sentences, which are subsets of Sentence 2, and if the
matching continues to occur in e.g. more than 70% of the
sentences, the word communicate becomes a member of the
cluster formed by speak and the word with matches with the
second 0. Now the new HMM has 14 states and the number of
observations is 17. State transition and observation probabilities
are updated accordingly and the new thresholds are set. We
proceed with the longest sentence of the remaining ones and the
procedure is continued until no more training sentences exist.

The resulting network is depicted in Figure 2b. As we see it is
non-acyclic and produces a superset of the sentences of the
manually created network. Some of the additional sentences are
correct, e.g. enter [must speak with X exit (cannot be derived
from the network in Figure 2a). The prediction of paths not
contained in the training sentences is one of the main
advantages of our method. Other additional sentences are
grammatically wrong, e.g. enter I must communicate to X exit,
enter if that is ok X if that is ok exit. However, if we take into

account the fact that speech does not conform to strict
grammatical rules, these sentences, although incorrect, may lead
to accuracy improvement, since more sentences are predicted by
the language model. If we had used phrases, the phrase would
like to would have been matched with must, which does not
happen if only words are used. Thus phrase-based clusters
supersede word-based ones in terms of compactness and
efficiency. Phrases can be formed, by using simple or more
complicated rules, text chunkers, parsers etc.

In Table 1, we can see the test results on 4 lattices (L1-L4) of
the call-routing spoken dialogue system. The first and second
columns give the nodes/links of the manually created network
(M) and the network (A) derived automatically from our method
respectively. We can also see the number of clusters for
networks M and A and how many incorrect or partially correct
clusters are found in A. For each cell we have two rows, the first
for word classes and the second for phrase-based ones.

Nodes Nodes Clusters Clusters Incorrect
/Links /Links ™) @A) clusters
(M)) A)
72/138 | 28/102 5 5 0
LU 51119 | 19/89 6 6 1
48/79 | 19/94 4 5 1
L2 1 3961 12/73 4 4 0
L | d0es | 32ma 2 2 0
29/53 | 23/61 3 3 0
Lo | 20m0 | 227 2 2 1
2139 | 1845 3 3 0

Table 1: Test results from the call-routing system.

4. SUMMARY AND CONCLUSIONS

In this paper, we presented a method for creating stochastic
networks for language modelling in spoken dialogue systems.
The main advantage of our algorithm is that word/phrase classes
are created automatically during the construction of a HMM
model, which will be transformed to a stochastic network. In
addition, the resulting network can produce sentences that were
not included in the training data. Our method has been tested
using sentences from IDAS and a call-routing dialogue system
and has shown the expected advantages. Future work will focus
on the improvement of the algorithm, the use of phrases based
on complicated rules and the exploration of how the resulting
network of our method affects recognition performance.

5. REFERENCES

1. W. Eckert, F. Gallwitz and H. Niemann, “Combining
stochastic and linguistic language models for
recognition of spontaneous speech, ICASSP 96, pp.
423-426, Atlanta, GA.

2. G. Riccardi, E. Bocchieri and R. Pieraccini, “Non-
deterministic stochastic language models for speech
recognition”, ICASSP 95, pp. 237-240, Detroit, MI.

3. L.R. Rabiner, “A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition”,
Proc. of the IEEE, Vol. 77, No. 2, Feb. 1989, pp. 257-
285.

