Efficient Stochastic Finite-State Networks
for Language Modelling in Spoken Dialogue Systems

Kallirroi Georgila, Nikos Fakotakis, George Kokkinakis

Wire Communications Laboratory
Electrical and Computer Engineering Dept.

University of Patras, Greece
{rgeorgil, fakotaki, gkokkin}@wcl.ee.upatras

Abstract

In this paper we present a novel method for creating language
models for Spoken Dialogue Systems (SDS). The idea is
based on combining the linguistic structure and the limited
requirements for training data of grammar-based models with
the robustness of stochastic models regarding spontaneous
speech. Our algorithm requires a set of sentences as input, in
order to train a Hidden Markov Model (HMM). Classes
containing words or phrases with semantic-syntactic
similarities are formed automatically and simultaneously with
the construction of the HMM. The states and observations of
the HMM correspond to the word/phrase classes and
words/phrases respectively. The resulting HMM incorporates
grammatical structure provided by large context dependencies
as well as coverage of ungrammatical spontaneous sentences
provided by statistical estimations. The HMM is transformed
to a Stochastic Finite-State Network (SFSN), which allows
for variable history sizes with no specific upper limit. We
used data from 3 different SDSs to evaluate the algorithm.
The experiments carried out, resulted in precision and recall
values regarding the classes formed, of 0.97 and 0.76 in
average, respectively. There was also a reduction of perplexity
(16.15% in average) compared to bigrams and a gain in
recognition performance (keyword accuracy) of 6.2%
compared to grammar-based models and 5.4% compared to
bigrams.

1. Introduction

Statistical language models based on n-grams are broadly
used in large vocabulary speech recognition systems, e.g. in
automatic dictation applications. However, reliable n-gram
estimation requires a very large training corpus and/or
sophisticated smoothing techniques. In addition, the search
space of a Viterbi continuous speech decoder grows
exponentially with the order of n. On the other hand,
linguistic models can easily describe large context
dependencies. However, they are known to be very restrictive.
In mixed-initiative or user-driven dialogues where the speaker
is not restricted by the dialogue structure and does not
conform to any grammatical formalism, grammar-based
models perform poorly. Therefore, it is desirable to combine
both types of models. Grammar-based models lead to a better
word accuracy for grammatically correct utterances whereas
stochastic models are much more robust against effects of
spontaneous speech.

A number of researchers have proposed ways to use
linguistic knowledge in speech recognition [1][2]. This paper
is an extension of our work in [3] where we proposed a
method for creating a SFSN, which integrates statistical

estimations with grammatical constraints, thus retaining the
advantages of both statistical and grammar-based language
models. In the aforementioned systems, n-grams are derived
from grammars, or two separate models, a linguistic and a
stochastic one, are interpolated to form a new language model.
Our algorithm incorporates in its structure the integration of
linguistic and stochastic features. That is the resulting model is
built in a straightforward way from the training data and not
by the combination of a grammar-based model and a
statistically estimated one.

Another main advantage of our technique is that
word/phrase classes are created automatically during the
construction of the HMM. In most existing systems classes are
created manually or if automatic techniques are used the
clustering procedure is independent of the construction of the
final models. That is in all the aforementioned cases, the
language models require already formed clusters in order to
become more compact and robust. Our algorithm does not
require the preexistence of classes but creates them
automatically and simultaneously with the HMM construction.

The resulting HMM of our method is transformed to a
SFSN where the nodes are the word/phrase classes and the
arcs are the state-transition probabilities of the HMM. The
observation probabilities of the HMM correspond to the
probabilities within the classes (sub-networks) of the
stochastic network. The use of stochastic automata to represent
statistical language models has been recently proposed [4][5]
with the aim to handle accurate language models in a one-step
decoding procedure. In [4] a back-off n-gram language model
is represented through a non-deterministic Stochastic Finite-
State Automaton (SFSA), which is called Variable N-gram
Stochastic Automaton (VNSA). Each state S is associated with
a m-tuple observed in the training set, v;, ..., v, with 0 <m <n
(n is the order of the automaton). The m-tuple is called history
of the state S. In [5] the use of smoothed K-Testable Language
in the Strict Sense (K-TLSS) regular grammars allowed to
obtain a deterministic SFSA. K stands for the same meaning as
N in N-gram and each state of the automaton represents a word
chain of up to K-/. Our algorithm produces a deterministic
SFSN where each state (node) is defined by a word/phrase,
and a state-transition (arc) by a probability. In VNSAs, and
SFSAs based on K-TLSS, the history size has a value of up to
N-1 and K-I respectively. Our algorithm allows for longer
distance dependencies to be considered, and results in variable
history sizes with no specific upper limit. The upper limit
depends on the number of words/phrases of the sentences used
as training data and the way these sentences are associated,
and in many cases the complete history is retained.

In [3] the experiments carried out showed the efficiency of
our algorithm regarding the construction of compact SFSNs

with correctly formed clusters compared to the grammar-based
ones. In this paper we go 3 steps further. First, new parameters
are inserted so that the algorithm is improved. Second, we
prove again the efficiency of our method conducting large-
scale experiments, using data from 3 different applications,
estimating precision and recall values for the clusters formed,
and at the same time we consider perplexity and smoothing
techniques. Third, we explore how the resulting language
model of our method affects recognition performance. In all
tests the produced networks are compared not only with
grammar-based models but also with bigrams.

The paper is organized as follows: In Section 2 a concise
description of the algorithm is given, considering that its
detailed presentation is included in [3]. However, some of its
new features are presented in detail. Experimental results
concerning precision and recall (regarding clusters), and
perplexity are given in Section 3. The effects of the produced
models on recognition performance are explored in Section 4.
Finally, some conclusions are given in Section 5.

2. Algorithm description

At first a set of sentences is selected to train the initial HMM.
These sentences can be derived from simulation experiments,
from the system itself, from the application grammar, be
manually created or be produced by a combination of these
methods. Our algorithm takes the set of sentences for granted,
regardless of how they are produced. However, as it will be
shown in the tests carried out, the best results are obtained by
mixing sentences taken from the use of the system with
sentences derived from grammar-based networks. For every
new sentence S the Viterbi algorithm is activated to check
whether this sentence could be extracted by the current HMM.
The probability assigned to the sentence S is compared with a
threshold 7, which is defined for the HMM.

a. If the probability assigned to S exceeds or is equal to 7’
(Case 1), or if a part of S fits in an existing HMM path (Case
2), then unknown observations of S, that is words/phrases, are
able to match existing states, i.e. word/phrase clusters, and
become members of them. In this way, the -clustering
procedure takes place simultaneously with the construction of
the HMM. Taking into consideration the modified clusters and
sentences that are subsets of S, the HMM is updated. That is,
the observation probabilities within the existing states
(clusters) are reestimated and new states may be added (for the
parts of sentences that cannot match existing states). Subset
sentences of S are the sentences, all the words/phrases of
which are contained in sentence S. The word/phrase order may
be considered or not be taken into account. b. If the
probability assigned to S is smaller than 7" and no parts of S fit
in existing HMM paths, the already existing states (clusters)
are not updated, but new ones are created to incorporate the
subset sentences of S into the HMM. In either case (a) or (b), a
new threshold for the updated HMM is estimated and replaces
T. Then a new sentence is selected, the probability of which is
going to be compared with the updated threshold. The
procedure iterates until no more sentences are available.
Throughout the iterations, phrases may be formed (by using
simple rules or by taking into consideration sophisticated
syntactic and semantic restrictions), during each sentence’s
processing, that is before Viterbi is applied. After the final
HMM has been constructed, it is transformed to a SFSN.

The type of the HMM we use is discrete. Two types of

Figure [I: (a) Grammar-based network, (b) bigram, (c)

hybrid network (WPO), and (d) hybrid network (NWPO).
transition probabilities are considered: transitions with equal
probability from one state to another or probabilities derived
from the number of times a word/phrase class appears after
another. Thus if a word/phrase class u is followed by n
word/phrase classes in the training data, then for the case of
equal probabilities, the probability that a word/phrase class w
occurs after the word/phrase u would be P(w | u) =1/ n (1).
On the other hand, if the number of times class w follows u is
considered, then P(w | u) = N(u, w) / N(u) (2) where N(u, w) is
the number of occurrences of class w after class u# and N(u) the
number of occurrences of class u. In the same way,
observations, i.e. words/phrases can have equal probabilities
within a state (class), or the probabilities are formed according
to the frequency of occurrence of the words/phrases. In the
former case if a word/phrase w belongs to a class C(w), which
has n members, then the probability of this word/phrase in the
class is P(w | C(w)) = 1 / n (3). In the latter case P(w |C(w)) =
N(w) / N(C(w)) (4) where N(w) is the number of occurrences
of word/phrase w and N(C(w)) the number of occurrences of
class C(w), that is the sum of occurrences of the words, which
belong to class C(w).

In case where the word/phrase order is retained (WPO—
Word/Phrase Order), if S is the sequence of words/phrases v;
v, V3, ..., v, then a subset sentence of S would have the form
Vis Vjs Vis s Vi 1 1 <j <k <..<m < n.If the word/phrase
order does not pose a constraint (NWPO—No Word/Phrase
Order), the subset sentences of S are v;, vj, Vi, ..., Vi 1 <1, j, k,
m < n. Every time Viterbi is activated, when we use the
longest of the training sentences as the new sentence S and
have the NWPO case, then more sentences will become subset
sentences directly, and the computation time will be reduced.
In Figure 1, a grammar-based network, the corresponding
bigram and the two hybrid networks derived from our method

are depicted. In Figure 1¢ (WPO) in most paths the complete
history is retained. However, In Figure 1d (NWPO) some part
of history is lost due to the existence of loops. In general WPO
allows for greater history size than NWPO.

In Case 2 where only a part and not the whole sentence
matches an existing path straightforwardly or by shift, the
candidate matches between new observations and existing
states, may be accepted according to some criteria such as
frequency of occurrence, position, number of words, word
order, if a word/phrase sequence appears more than once in
the path etc. If these criteria are very strict, then it is more
likely that the candidate matches will be rejected, which will
result in a model where grammatical structure supersedes
stochastic features. On the other hand, loose criteria will allow
matches that do not conform to grammatical rules and may
also cause insertions of loops. That is the resulting network
will come closer to the n-gram structure. Some additional
criteria could also be added so that the clusters are correctly
formed e.g. words are divided in functional and non-functional
words or their Part-Of-Speech (POS) could be considered.
Thus a functional word cannot be clustered with a non-
functional one and words that do not have the same POS
cannot belong to the same class. In the same way phrases of
different types may not be allowed to be in the same cluster
even if all the other criteria are met. These additional
constraints (apart from POS) have been taken into account in
tests and have resulted in improved performance.

3. Language model evaluation

In order to test our algorithm we used data from 3 different
SDSs: ACCeSS (EU project LE-1 1802, a system for the
automation of call center services of a car insurance company),
IDAS (EU project LE-48315, an Interactive telephone-based
Directory Assistance Services system), and a call-routing SDS
developed by Knowledge S.A. We used data from 49 dialogue
states (38 of ACCeSS, 7 of IDAS and 4 of the call-router).

Three sets of experiments were carried out. In the first one
(Test 1) we considered as training data for our algorithm, the
sentences derived from the grammars of the 3 applications.
This aims at comparing grammar-based networks with our
hybrid models under the same conditions that is with exactly
the same training data. The appropriate grammar is loaded
according to the SDS and the dialogue state. We carried out
experiments with word/phrase classes for both WPO and
NWPO. Two types of probability estimations were considered.
In the former case, which we will call T1, equations (1) and
(3) were used to compute the transition and within class
probabilities respectively. In the latter case (T2), we applied
equations (2) and (4). Phrases were formed without using
sophisticated syntactic or semantic rules but by considering
words with very strong correlation (e.g. I would like to, etc.).
When we extracted the phrases for our training set, we
modified the grammar networks to take the phrases into
account so that we have phrase-based grammar networks too.

The precision and recall parameters comprise a valid
metric for evaluating the performance of our algorithm
regarding the clusters formed. We define as C the number of
correct clusters formed by our method, 7" the total number of
clusters formed by using our algorithm, and 7C the total
number of correct clusters, which can be derived from the
training data. Then: Precision = C / T and Recall = C / TC.

It is very crucial that the precision is high so that no ill-

Test 1 Test 2 Test 3
WPO | NWPO | WPO | NWPO | WPO | NWPO

Precision
W-T1 | 0.97 | 0.96 0.93 | 093 0.96 | 0.96
W-T2 | 0.98 | 0.97 0.94 | 093 0.97 | 0.96
P-T1 0.97 | 0.97 0.94 | 0.94 0.97 | 0.95
P-T2 | 098 | 0.97 0.95 | 0.95 0.97 | 0.96
Recall
W-T1 | 0.77 | 0.78 0.74 | 0.75 0.76 | 0.76
W-T2 | 0.77 | 0.77 0.74 | 0.74 0.75 | 0.75
P-T1 0.77 | 0.79 0.75 | 0.75 0.76 | 0.76

P-T2 | 0.76 | 0.78 0.73 | 0.74 0.75 | 0.76
Table I: Precision and recall values.

Perplexity Increase Perplexity Reduction

vs. grammars (%) vs. bigrams (%)

WPO NWPO WPO NWPO
W-T1 7.34 8.57 17.11 15.85
W-T2 7.22 8.25 17.19 15.96
P-T1 6.89 8.18 17.36 16.13
P-T2 6.81 7.92 17.54 16.25

Table 2: The perplexity (%) in hybrid networks compared
to grammar-based ones and bigrams (Test 1).

formed clusters are created since this would result in
associating irrelevant words/phrases and in the end in
increasing perplexity. Thus very strong thresholds are set to
ensure that only correct clusters are created. In Table 1, the
precision and recall values are depicted. Computing the
average is not an accurate but an indicative metric in our case
since the 49 networks are not equivalent in structure.
Sometimes a T1 network can have different precision and
recall from the corresponding T2 network. We have observed
that often the T2 networks have higher precision but lower
recall than the T1 ones. That is they are more reliable in
forming correct clusters but on the other hand as their
probabilities are based on the exact number of occurrences,
sometimes they fail to match words/phrases, which are
strongly correlated but that do not have equivalent
occurrences. In the same way in the WPO case the precision is
higher since the word/phrase order is taken into consideration
in forming clusters. However, networks derived from the
NWPO case tend to have higher recall values. Moreover,
phrase (P) networks generally outperform word (W) ones.

Table 2 depicts the average increase in perplexity of our
hybrid networks compared to the grammar-based ones and the
average reduction compared to bigrams. Perplexity in the
grammar-based and our hybrid networks is estimated by
following paths backwards and multiplying the inverse
branching factor at each step. Perplexity in grammar-based
networks is smaller than in hybrid ones. However, a very small
perplexity indicates that the language model is not robust
against utterances not included in the training data. According
to the experiments, T2 networks have lower perplexity than T1
ones. Networks of WPO case have lower perplexity values
than the ones of NWPO case and phrase-based networks have
generally lower perplexity than word-based ones.

In the second set of experiments (Test 2), we considered as
training sentences data derived from the use of the system

itself, to compare our models with bigrams. The reason is that
the power of bigrams arises from the fact that they give
reliable estimations when trained with real data. Thus it would
not be appropriate to compare our models with bigrams using
sentences derived only from grammars. Data is split in two
parts (80% for training, 20% for testing) so that perplexity is
computed by using a test set different from the training set.
Since the test data may contain events not seen in the training
sentences, smoothing techniques should be applied. We used
the Witten-Bell discounting scheme. If we have a node A4
connected to a node B, then n is the number of occurrences of
links “4 *” and ¢ is the number of the distinct links “A *” that
exist. We consider only the occurrences of the specific node
and not of the word or phrase associated with it, because the
word/phrase may appear in more than one nodes. For events
that have been seen P(w | h) = ¢/ (n + t) (where w is a word, A
is the history and ¢ is the number of occurrences of w in the
context /). For unseen events P(w | h) =t/ (n + t). Table 3
shows the average perplexity reduction in our hybrid networks
compared to bigrams. The perplexity reduction vs. bigrams is
a little higher in Test 1 compared to Test 2. A reasonable
explanation would be that the performance of bigrams is better
in Test 2 since the training sentences are real data derived
from the use of the system itself and not by a grammar. The
average precision and recall values for the clusters formed are
shown in Table 1. There is a reduction compared to the values
of Test 1 caused by the spontaneous nature of the training data
in Test 2, which complicates clustering.

Test 2 Test 3
WPO NWPO WPO NWPO
W-T1 15.28 13.39 15.71 14.20
W-T2 15.42 13.63 15.85 14.44
P-T1 15.55 14.18 16.02 14.57
P-T2 15.69 14.22 16.15 14.91

Table 3: The average perplexity reduction (%) in hybrid
networks compared to bigrams (Tests 2 and 3).

In the third experiment (Test 3) we considered as training
sentences data derived from grammars mixed with sentences
derived from the use of the system. Table 3 shows the
perplexity reduction. Again smoothing was applied. Table 1
depicts the average precision and recall values for the clusters
formed. There is a reduction compared to the values of Test 1
but an increase compared to Test 2 since sentences derived
from grammars are included in the training data.

4. Recognition performance

In order to investigate how the networks produced by our
algorithm affect recognition performance, tests were carried
out with data from the call-routing dialogue system. We used
500 recordings spoken by real users, corresponding to the
system prompt “Who would you like to speak with?”. In Table
4 we can see the keyword accuracy for grammar-based (G)
networks, hybrid ones and bigrams (2g). The keyword
accuracy is the percentage of the sentences where the keyword
(name) was recognized correctly. The hybrid networks give
the best recognition rates due to the fact that they retain the
predictability of the grammar-based networks and at the same
time they are more robust for spontaneous speech. The
columns correspond to the methods of building the models
and the training data. This of course does not apply to
grammar-based networks and that is why they have the same

accuracy in all tests. If the best percentages of grammar-based
networks, hybrid ones and bigrams are considered, the gain in
recognition performance is 6.2% compared to grammar-based
networks and 5.4% compared to bigrams.

Test 1 | Test 2 | Test 3
W-G 78.0
P-G 78.2
WPO NWPO WPO NWPO WPO NWPO

W-T1 | 80.8 814 | 81.0 81.2 | 81.6 82.0

W-T2 | 82.0 822 | 81.6 82.0 | 824 83.0

P-T1 | 824 83.0 | 824 82.6 | 83.2 83.8

p-T2 | 82.8 83.2 | 82.6 82.8 | 84.0 84.4

W2g 77.6 78.4 78.8

P2g 78.0 78.6 79.0

Table 4: Keyword recognition accuracy (%).

5. Conclusions

In this paper we presented a method for creating a SFSN for
language modelling in SDSs. Word/phrase classes are created
automatically during the construction of the SFSN. The
resulting SFSN incorporates linguistic knowledge and
information provided by statistical estimations and allows
variable history sizes with no specific upper limit. The tests
carried out, proved the efficiency of our algorithm regarding
precision and recall values for the clusters formed. In addition,
they showed a considerable reduction in perplexity compared
to bigrams, which if it is combined with the gain in
recognition performance against both grammar-based
networks and bigrams, makes our method appropriate for
building efficient language models for SDSs.

Future work will focus on exploring the amount of data
necessary for constructing efficient networks. We will also
modify our algorithm so that it deals with higher order n-
grams, which will result in lower perplexity values. Higher
order n-grams will improve the NWPO case, which gave the
best recognition results, by reducing the probability of creating
wrong loops and clusters. Thus only the NWPO case will be
considered since its drawbacks will be diminished. Moreover,
enhanced smoothing techniques will be investigated.

6. References

[1] Jurafsky, D., Wooters, C., Segal, J., Stolcke, A., Fosler,
E., Tajchman, G., Morgan, N., “Using a stochastic
context-free grammar as a language model for speech
recognition”, ICASSP 95, Vol. 1, pp. 189-192.

[2] Eckert, W., Gallwitz, F., Niemann, H., “Combining
stochastic and linguistic language models for recognition
of spontaneous speech”, ICASSP 96, pp. 423-426.

[3] Georgila, K., Fakotakis, N., Kokkinakis, G., “Building
stochastic language model networks based on
simultaneous word/phrase clustering”, ICSLP 2000, Vol.
1, pp. 122-125.

[4] Riccardi, G., Pieraccini, R., Bocchieri, E., “Stochastic
automata for language modeling”, Computer Speech and
Language, Vol. 10, pp. 265-293, 1996.

[5] Bordel, G., Varona, A., Torres, M.L, “K-TLSS(S)
language models for speech recognition”, ICASSP 97,
Vol. 2, pp. 819-822.

