
Programming by Voice: enhancing adaptivity and robustness of spoken
dialogue systems

Kallirroi Georgila and Oliver Lemon
School of Informatics, University of Edinburgh
kgeorgil,olemon@inf.ed.ac.uk

Abstract

This demonstration system allows users
to reconfigure dialogue systems by using
speech dialogues to build simple programs
for devices and services. This is a novel
type of adaptivity – where the user is able
to explicitly adapt some aspects of the di-
alogue system to their own needs, and is
a capability beyond any commercially de-
ployed systems. The main idea is to extend
command-based and information-seeking
dialogue systems so that users can recon-
figure them to perform common tasks, or
to behave in specific ways in certain con-
texts that are of interest to the user. We
present a voice-programming (VP) system
for device control and information seek-
ing, using the extended in-car “TownInfo”
dialogue system (Lemon et al., 2006) de-
veloped in the TALK project1 and built us-
ing DIPPER (Bos et al., 2003) and ATK
(Young, 2004).

1 Introduction

Most users do not want to learn complex operating
instructions for devices and services, so an alterna-
tive is to allow them to create their own commands
and programs. Users may also wish to configure
their devices to carry out specific actions which are
tailored to their needs and preferences. One way
of doing this is to allow users a level of “program-
ming” access to the interfaces themselves.

For example, in an automated home environ-
ment, by uttering a simple phrase such as “I want
to relax” a user may request the home control sys-
tem to perform a number of pre-defined tasks such
as turning down the lights, playing classical music,
and switching the telephone off. In a similar way,

1http://www.talk-project.org

users could call their house when away and define
external-event-driven programs such as “Only turn
the heating on if the temperature falls below 10 de-
grees”. Similar scenarios can be imagined for in-
car device-control dialogues, for example “’I need
some peace’ means turn the stereo off and close
the windows”, or “Open the sun roof if the tem-
perature goes above 20”.

The idea of voice programming for services is
similar – it is much faster, easier, and more robust
for the user of a tourist information service to say,
for example “show me my favourites” than “show
me all expensive French restaurants in the centre
of the city”.

1.1 Improved robustness

Voice programming is not only a matter of con-
venience and efficiency for the user but also leads
to potential robustness gains. Considering speech
recognition limitations, especially in noisy envi-
ronments such as cars, shorter and more precise
commands will in general lead to fewer errors
and increase overall user satisfaction. Likewise, if
users can define the semantics of their utterances
through voice programs, fewer clarifications and
confirmations will be required in dialogues.

1.2 Related work

The Metafor project (Liu and Lieberman, 2005)
explored the idea of using descriptions in natural
language as a representation for programs (Python
code). Metafor does not convert arbitrary En-
glish to fully specified code, but uses a reason-
ably expressive subset of English as a visualization
tool. Simple descriptions of program objects and
their behaviour generate scaffolding (underspec-
ified) code fragments, that can be used as feed-
back for the designer. In contrast, our system al-
lows users to generate fully working programs via
speech dialogues alone.



2 The demonstration system

The current system focuses on controlling devices
and services using programs which are:

� activated by speech commands or environ-
mental events

� defined by the user via speech dialogues.
The basic system that we will demonstrate

shows programming by voice of macros and con-
ditionals for a tourist information service, and uses
the ATK speech recogniser (Young, 2004) and
DIPPER dialogue manager (Bos et al., 2003).

The capabilities of the demonstration system2

are implemented by extending the Information
State definitions with fields for macro and con-
ditional names, which can take appropriate argu-
ments (sequences of commands and/or slot val-
ues), and adding update rules for interpreting and
processing voice programming utterances. In ad-
dition, we compiled a language model for voice
programming from a GF grammar (Ranta, 2004),
and extended the system’s parser.

2.1 Defining Macros

A macro is a way for the user to automate a com-
plex task that he/she performs repeatedly or on a
regular basis. It is a series of commands or infor-
mation slots that can be stored and run/accessed
whenever the user needs to perform the task. The
user can record or build a macro, and then play
the macro to automatically activate the series of
actions.

The syntax for a macro is:
macro name = slotValue/command 1 and ...

slotValue/command N

In the tourist-information service demo a sup-
ported macro is: “When I say ’romantic dinner’ I
mean an expensive Italian restaurant in the town
centre”.

After a Wizard-of-Oz data collection for voice
programming dialogues, we have extended the
coverage of our system (Lemon et al., 2006) to
interpret some types of user utterances as macro
definitions.

For example user inputs such as:
� When/If/Whenever I say T, it means/I mean

X 1 ... X n
� X 1 ... X n when/if/whenever I say T

are interpreted as defining a macro with trig-
ger phrase T and which stands for com-
mands/information slot values X 1 ... X n.

2Macros and Conditionals are functional at the time of
writing, and we expect Loops and Iteration to be supported
by the time of the conference.

Note however that in terms of the dialogue con-
text, the effect of “X 1 ... X n” is not the same as
if the user had actually uttered the individual X i.
For example the salient NPs in each X i are not
available for anaphoric reference. Exactly what
the effects on the dialogue context should be is a
matter for ongoing research.

The previous example (’romantic dinner’) is
stored in the information state as a list. When
the user utters the macro name, the system will
retrieve the associated slots with their values and
try to satisfy the user’s request.
[macro, ’romantic dinner’, restaurant,

[[price range],[food type],[location]],

[[expensive],[italian],[central]] ]

2.2 Defining Conditionals

The syntax for conditionals is: if

condition=true then slotValue/command 1

...slotValue/command N or execute

macro name

A typical example of a conditional for program-
ming services in the demo system is: “When I ask
for pizza make it expensive”. This conditional is
stored in the information state as follows:
[cond, restaurant, [food type], [pizza],

[[price range]], [[expensive]] ]

3 Summary

We demonstrate a novel dialogue system for Pro-
gramming by Voice which leads to enhanced adap-
tivity and robustness of spoken dialogue systems.

References
Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi

Oka. 2003. DIPPER: Description and Formalisa-
tion of an Information-State Update Dialogue Sys-
tem Architecture. In 4th SIGdial Workshop on Dis-
course and Dialogue, pages 115–124, Sapporo.

Oliver Lemon, Kallirroi Georgila, James Henderson,
and Matthew Stuttle. 2006. An ISU dialogue sys-
tem exhibiting reinforcement learning of dialogue
policies: generic slot-filling in the TALK in-car sys-
tem. In Proceedings of EACL.

Hugo Liu and Henry Lieberman. 2005. Metafor: Visu-
alizing stories as code. In Proceedings of the ACM
International Conference on Intelligent User Inter-
faces, IUI. ACM.

Aarne Ranta. 2004. Grammatical framework: A type-
theoretical grammar formalism. Journal of Func-
tional Programming, 14(2):145–189.

Steve Young, 2004. ATK: An Application Toolkit for
HTK, version 1.4.


